Skip to main content
Log in

Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x (κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. G. McKamey, C.T. Liu, J. V. Cathart, S. A. David, E. H. Lee: Technical Report, ORNL:TM-10125, Oak Ridge National Lab, Oak Ridge, 1986.

    Google Scholar 

  2. C.G. McKamey, J.H. DeVan, P.F. Tortorelli, V.K. Sikka: J. Mater. Res., (1991), vol. 6, pp. 1779-1805.

    Article  Google Scholar 

  3. P.F. Tortorelli, K. Natesan: Mater. Sci. Eng. A, (1998), vol. 258, pp. 115–125.

    Article  Google Scholar 

  4. N.S. Stoloff: Mater. Sci. Eng. A, (1998), vol. 258, pp. 1–14.

    Article  Google Scholar 

  5. S.C. Deevi, V.K. Sikka: Intermetallics. (1996), vol. 4, pp. 357–375.

    Article  Google Scholar 

  6. N.S. Stoloff, C.T. Liu, S.C. Deevi: Intermetallics. (2000), vol. 8, pp. 1313–1320.

    Article  Google Scholar 

  7. J.H. Devan, P.F. Tortorelli: Corros. Sci.,(1993), vol. 35, 1065–1071.

    Article  Google Scholar 

  8. P.F. Tortorelli, J.H. DeVan: Mater. Sci. Eng. A, (1992), vol. 153, pp. 573–577.

    Article  Google Scholar 

  9. S. Banovic, J. DuPont, A. Marder: Scr. Mater., (1998), vol. 38, pp. 1763–1767.

    Article  Google Scholar 

  10. H. Halfa: J. Miner. Mater. Charact. Eng., (2010), vol. 9, pp. 775–786.

    Google Scholar 

  11. N. Cinca, C.R.C. Lima, J.M. Guilemany: J. Mater. Res. Technol., (2013), vol. 2, pp. 75–86.

    Article  Google Scholar 

  12. C.T.T. Liu, J. Stringer, J.N.N. Mundy, L.L.L. Horton, P. Angelini: Intermetallics. (1997), vol. 5, pp. 579–596.

    Article  Google Scholar 

  13. N.S. Stoloff, C.T. Liub: Intermetallics. (1994), vol. 2, pp. 75–87.

    Article  Google Scholar 

  14. W.C. Luu, J.K. Wu: Mater. Chem. Phys., (2001), vol.70, pp. 236–241.

    Article  Google Scholar 

  15. R.G. Baligidad, U. Prakash, A. Radhakrishna, V.R. Rao, P.K. Rao, and N.B. Ballal: Scr. Mater., 1997, vol. 36, pp. 105–09.

  16. R.G. Baligidad and A. Radhakrishna: Mater. Sci. Eng. A, 2000, vol. 287, pp. 17–24.

  17. R.G. Baligidad, A. Radhakrishna, V.R. Rao, P.K. Rao, N.B. Ballal: Scr. Mater. (1997), vol. 36, pp. 667–671.

    Article  Google Scholar 

  18. S.M. Zhu, X.S. Guan, K. Shibata, K. Iwasaki: Metall. Mater. Trans. A, (2002), vol. 33, pp. 1292–1295.

    Article  Google Scholar 

  19. J. Yang, P. La, W. Liu, J. Ma, Q. Xue: Intermetallics. (2005), vol. 13, pp. 1184–1189.

    Article  Google Scholar 

  20. T. Itoi, S. Mineta, H. Kimura, K. Yoshimi, M. Hirohashi: Intermetallics. (2010), vol. 18, pp. 2169–2177.

    Article  Google Scholar 

  21. A. Radhakrishna, R.G. Baligidad, D.S. Sarma: Scr. Mater. (2001), vol. 45, pp. 1077–1082.

    Article  Google Scholar 

  22. R.G. Baligidad, U. Prakash, A.R. Krishna: Malerials Sci. Eng. A, (1997), vol. 230, pp. 188–193.

    Article  Google Scholar 

  23. V.A. Andryushchenko, V.G. Gavrilyuk, V.M. Nadutov: Ph. MET. Metallography, (1985), vol. 60, pp. 50-55.

    Google Scholar 

  24. D. Connétable, P. Maugis: Intermetallics. (2008), vol. 16, pp. 345–352.

    Article  Google Scholar 

  25. D. Feijó, L. Borges, D. Crocce, R. Espinosa, C. Geraldo: J. Mater. Res. Technol., (2014), vol. 3, pp. 101–106.

    Article  Google Scholar 

  26. R.G. Baligidad, U. Prakash, and A. Radhakrishna: Intermetallics., 1998, vol. 6, pp. 765–769.

  27. A. Schneider, L. Falat, G. Sauthoff, G. Frommeyer: Intermetallics. (2005), vol. 13, pp. 1322–1331.

    Article  Google Scholar 

  28. R.G. Baligidad, U. Prakash, A. Radhakrishna: Materials Sci. Eng. A, (1997), vol. 231, pp. 206–210.

    Article  Google Scholar 

  29. R.G. Baligidad, A. Radhakrishna, U. Prakash: Materials Sci. Eng. A, (1998), vol. 257, pp. 235–239.

    Article  Google Scholar 

  30. V.S. Rao, R.G. Baligidad, V.S. Raja: Corros. Sci., (2002), vol. 44, pp. 521–533.

    Article  Google Scholar 

  31. U. Prakash, G. Sauthoff: Scr. Mater., (2001), vol. 44, pp. 73–78.

    Article  Google Scholar 

  32. J. Yang, P. La, W. Liu, Y. Hao: Mater. Sci. Eng. A, (2004), vol. 382, pp. 8–14.

    Article  Google Scholar 

  33. M.S. Archana, R.C. Gundakaram, Y.S. Rao, V.V.S.S. Srikanth, S.V. Joshi, J. Joardar: Mater. Sci. Eng. A, (2014), vol. 611, pp. 298–305.

    Article  Google Scholar 

  34. K. Isonishi: Mater. Sci. Forum, (2007), vol. 534–536, pp. 189–192.

    Article  Google Scholar 

  35. C. Shen, Z. Pan, Y. Ma, D. Cuiuri, H. Li: Addit. Manuf., (2015), vol. 7, pp. 20–26.

    Article  Google Scholar 

  36. S. Deevi, V. Sikka, C. Liu: Prog. Mater. Sci., (1997), vol. 42, pp. 177–192.

    Article  Google Scholar 

  37. V.K. Sikka, D. Wilkening, J. Liebetrau, B. Mackey: Mater. Sci. Eng. A, (1998), vol. 258, pp. 229–235.

    Article  Google Scholar 

  38. U. Prakash: Trans. Indian Inst. Met., (2008), vol. 61, pp. 193–199.

    Article  Google Scholar 

  39. G. Giunchi, G. Ripamonti, T. Cavallin, E. Bassani: Cryogenics, (2006), vol. 46, pp. 237–242.

    Article  Google Scholar 

  40. Odegard, A. Bronson: JOM, (1997), vol. 49, pp. 52–54.

    Article  Google Scholar 

  41. D. Zhu, M. Gao, H. Pan, Y. Liu, X. Wang, Y. Pan, F.J. Oliveira, J.M. Vieira: Ceram. Int., (2013), vol. 39, pp. 3831–3842.

    Article  Google Scholar 

  42. A. Il’inskii, S. Slyusarenko, O. Slukhovskii, I. Kaban, and W. Hoyer: Mater. Sci. Eng. A, 2002, vol. 325, pp. 98–102.

  43. V.S. Rao: J. Mater. Sci., (2004), vol. 39, pp. 4193–4198.

    Article  Google Scholar 

  44. PDF 00-050-0955 (ICDD, 2015).

  45. J. Kopecek, P. Kratochvíl, D. Rafaja, D. Plischke: Intermetallics, (1999), vol. 7, pp. 1367–1372.

    Article  Google Scholar 

  46. PDF 00-029-0044 (ICDD, 2015).

  47. J. A. Jiménez, G. Frommeyer: J. Alloys Compd., (2011), vol. 509, pp. 2729–2733.

    Article  Google Scholar 

  48. ASTM International, ASTM E1876-09, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration, West Conshohocken, PA, 2009.

  49. R. Besson, A. Legris: Phys. Rev. B, (2008), vol. 78, pp. 1–11.

    Article  Google Scholar 

  50. Legarra, E. Apiñaniz, F. Plazaola: Intermetallics, (2010), vol. 18, pp. 1288–1292.

    Article  Google Scholar 

  51. M. Palm, G. Inden: Intermetallics, (1995), vol. 3, pp. 443–454.

    Article  Google Scholar 

  52. V.I. Moravetski, V.A. Andryushchenko, L.M. Sheludchenko: J. Phys. Chem. Solids, (1994), vol. 55, pp. 195–200.

    Article  Google Scholar 

  53. R.S. Sundar, R.G. Baligidad, Y.V.R.K. Prasad, D.H. Sastry: Mater. Sci. Eng. A, (1998), vol. 258, pp. 219–228.

    Article  Google Scholar 

  54. A.T. Phan, M.-K.Paek, Y.-B. Kang: Acta Mater., (2014), vol. 79, pp. 1–15.

    Article  Google Scholar 

  55. V. Raghavan: J. Phase Equilibria, (1993), vol. 14, pp. 615–617.

    Article  Google Scholar 

  56. H. Ohtani, M. Yamano, M. Hasebe: ISIJ Int., (2004), vol. 44, pp. 1738–1747.

    Article  Google Scholar 

  57. K. Yoshimp: Mater. Sci. Eng. A, (1995), vol. 194, pp. 53–61.

    Article  Google Scholar 

  58. H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, B. Sepiol: Mater. Sci. Eng. A, (1997), vol. 240, pp. 889–898.

    Article  Google Scholar 

  59. F. Stein, A. Schneider, G. Frommeyer: Intermetallics, (2003), vol. 11, pp. 71–82.

    Article  Google Scholar 

  60. I. Ohnuma, C.G. Schon, R. Kainuma, G. Inden, K. Ishida: Acta Mater., (1998), vol. 46, pp. 2083–2094.

    Article  Google Scholar 

  61. R.T. Fortnum, D.E. Mikkola: Mater. Sci. Eng., (1987), vol. 91, pp. 223–231.

    Article  Google Scholar 

  62. L. Anthony, B. Fultz: Acta Metall. Mater., (1995), vol. 43, pp. 3885–3891.

    Article  Google Scholar 

  63. U. R Kattner, B. P. Burton, In: Okamoto H, editor. Binary Alloy Phase diagrams. Materials Park, OH: ASM International; 1993. pp. 2-44.

    Google Scholar 

  64. K.C.H. Kumar, V. Raghavan: J. Phase Equilibria, (1991), vol. 12, pp. 275–286.

    Article  Google Scholar 

  65. M. Palm: Intermetallics, (2005), vol. 13, pp. 1286–1295.

    Article  Google Scholar 

  66. R. Kant, U.P. Vijaya, A.V. V Satya Prasad: Trans. Indian Inst. Met., (2016). vol. 69, pp. 845–850.

    Article  Google Scholar 

  67. C. T. Liu, K. S. Kumar: JOM, (1993), vol. 45, pp. 38-44.

    Article  Google Scholar 

  68. E. Frutos, D.G. Morris: Intermetallics, (2013), vol. 38, pp. 1–3.

    Article  Google Scholar 

  69. M. Friák, J. Deges, R. Krein, G. Frommeyer, J. Neugebauer: Intermetallics, (2010), vol. 18, pp. 1310–1315.

    Article  Google Scholar 

  70. W. Sanders, G. Sauthoff: Intermetallics, (1997), vol. 5, pp. 377–385.

    Article  Google Scholar 

  71. W.D. Callister Jr. and D.G. Rethwisch: Materials Science and Engineering: An Introduction, 8th ed. Wiley, 2009, pp. 630.

Download references

Acknowledgments

This research was supported by the Department of Mechanical Engineering of UTFPR and UFPR, which provided testing facilities, and the Fersul Cast Iron Foundry, which provided the experimental setup. We thank Tiffany Jain, M.S., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Nalu Verona.

Additional information

Manuscript submitted March 9, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verona, M.N., Setti, D. & Paredes, R.S.C. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing. Metall Mater Trans B 49, 529–536 (2018). https://doi.org/10.1007/s11663-017-1161-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1161-z

Keywords

Navigation