Skip to main content
Log in

The reactive liquid processing of ceramic-metal composites

  • Reactive Liquid Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The liquid reactive processing of ceramic preforms is developing into a viable method for producing near-net-shape composites. The combined concepts of transport phenomena, interfacial phenomena, and reactivity will serve to improve the processing and minimize the cost of the end product. As the understanding of these concepts increases, the metal- and ceramic-matrix composites being designed will continue to grow in range, complexity, and utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Clarke,J. Amer. Ceram. Soc., 75 (1992), pp. 739–759.

    Article  CAS  Google Scholar 

  2. A. Mortensen,Mat. Sci. Engr., A 73 (1993), pp. 205–212.

    Article  Google Scholar 

  3. R.E. Loehman, K.G. Ewsuk, and A.P. Tomsia,J. Amer. Ceram. Soc., 79 (1) (1996), pp. 27–32.

    Article  CAS  Google Scholar 

  4. A. Mortensen and V. Michaud,Met. and Mat. Trans. A, 21A (1990), pp. 2059–2072.

    Article  CAS  Google Scholar 

  5. V.J. Michaud and A. Mortensen,Met. and Mat. Trans. A, 23A (1992), pp. 2263–2279.

    Article  CAS  Google Scholar 

  6. T.F. Bower, H.D. Brody, and M.C. Flemings,Trans. TMS-AIME, 236 (1966), pp. 624–634.

    CAS  Google Scholar 

  7. Y. Kajikawa, T. Nukami, and M.C. Flemings,Met. and Mat. Trans. A, 26A (1995), pp. 2155–2159.

    Article  CAS  Google Scholar 

  8. D.R. Poirier and G.H. Geiger,Transport Phenomena in Materials Processing (Warrendale, PA: TMS, 1994), pp. 90–101.

    Google Scholar 

  9. A. Mortensen et al.,Met. and Mat. Trans. A 20A (1989), pp. 2535–2547.

    Article  CAS  Google Scholar 

  10. T. Yamauchi and Y. Nishida,Acta Metall. and Mater., 43 (1995), pp. 1313–1321.

    Article  CAS  Google Scholar 

  11. K.A. Semiak and F.N. Rhines,Trans. TMS-AIME (1958), pp. 325–331.

  12. R.B. Calhoun and A. Mortensen,Met. and Mat. Trans. A, 23A (1992), pp. 2291–2298.

    Article  CAS  Google Scholar 

  13. P. Zhang, T. Debroy, and S. Seetharaman,Met. and Mat. Trans. A, 27A (1996), pp. 2105–2114.

    Article  CAS  Google Scholar 

  14. C.G. Levi, G.J. Abbaschian, and R. Mehrabian,Met. Trans. A, 9A (1978), pp. 697–711.

    Article  CAS  Google Scholar 

  15. D.A. Weirauch,J. Mater. Res. (3) (1988), pp. 729–739.

    Article  CAS  Google Scholar 

  16. R. Defay, I. Prigogine', A. Bellemans, and D.H. Everett,Surface Tension and Adsorption (New York: Wiley & Sons, 1966), pp. 14–20.

    Google Scholar 

  17. C. Wagner, “Phenomenal and Thermodynamic Equations of Adsorption,”Nachrichten der Akademie der Wissenschaften in Gottingen, 3 (1973), pp. 1–27.

    Google Scholar 

  18. C.H.P. Lupis,Chemical Thermodynamics of Materials (Englewood Cliffs, NJ: PTR Prentice Hall, 1983).

    Google Scholar 

  19. J.A. Pask and A.P. Tomsia, “Wetting, Spreading, and Reactions at Liquid/Solid Interfaces,”Surfaces and Interfaces in Ceramic-Metal Systems, ed. A.G. Evans and J.A. Pask (New York: Plenum Press, 1987), pp. 411–419.

    Google Scholar 

  20. G.R. Belton,Met. Trans. B, 7B (1976), pp. 35–42.

    CAS  Google Scholar 

  21. B. Ozturk and G. Simkovich,Met. Trans. A, 11A (1980), pp. 2032–2034.

    Article  CAS  Google Scholar 

  22. P. Sahoo, T. Debroy, and M. McNallan,Met. Trans. B, 19B (1988), pp. 483–491.

    Article  CAS  Google Scholar 

  23. S.-Y. Oh, J.A. Cornie, and K.C. Russell,Met. Trans. B, 20A (1989), pp. 533–541.

    CAS  Google Scholar 

  24. W.M. Zhong, G. L'Esperance, and M. Suery,Met. and Mat. Trans. A, 26A (1995), pp. 2625–2635.

    Article  CAS  Google Scholar 

  25. G. Wang and J.J. Lannutti,Met. and Mat. Trans. A, 26A (1995), pp. 1499–1505.

    Article  CAS  Google Scholar 

  26. W.B. Johnson, T.D. Claar, and G.H. Schiroky,Cerant. Eng. Sci. Proc., 10 (1988), pp. 588–598.

    Google Scholar 

  27. M.C. Breslin et al.,Ceram. Engr. Sci. Proc., 15 (1994), pp. 104–112.

    Article  CAS  Google Scholar 

  28. W.G. Fahrenholtz et al., “Synthesis and Processing of Al2O3/Al Composites by In Situ Reaction of Aluminum and Mullite,”In Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics, ed. E. Barrera et al. (Warrendale, PA: TMS, 1995), pp. 99–109.

    Google Scholar 

  29. W.G. Fahrenholtz et al.,Met. and Mat. Trans. A, 27A (1996), pp. 2100–2104.

    Article  CAS  Google Scholar 

  30. B.H. Rabin and G.A. Moore, “Joining of SiC-Based Ceramics by Reaction Bonding Methods,”J. Mat. Synth. Proc., 1 (1993), pp. 195–201.

    CAS  Google Scholar 

  31. D.C. Dunand, J.L. Sommer, and A. Mortensen,Met. Trans. A, 24A (1993), pp. 2161–2170.

    Article  CAS  Google Scholar 

  32. E.T. Turkdogan,Physical Chemistry of High Temperature Technology (New York: Academic Press, 1980), pp. 5–26.

    Google Scholar 

  33. B. Hansen, masters thesis, University of Texas at El Paso (1996).

  34. D.R. Gaskell,Introduction to Metallurgical Thermodynamics, 2nd ed. (New York: Hemisphere Publishing Company, 1981), pp. 272–290.

    Google Scholar 

  35. Y.K. Rao,Stoichiometry and Thermodynamics of Metallurgical Processes (Cambridge, MA: Cambridge University Press, 1985), pp. 371–388.

    Google Scholar 

  36. A. Muan and E.F. Osborn,Phase Equilibria Among Oxides in Steelmaking (New York: Addison-Wesley Publishing Company, 1965), pp. 3–14.

    Google Scholar 

  37. S. Zador and C.B. Alcock,High Temperature Science, 16 (1983), pp. 187–207.

    CAS  Google Scholar 

  38. M. Serratos and A. Bronson,Wear, 198 (1996), pp. 267–270.

    Article  CAS  Google Scholar 

  39. S. Karunanithy,J. Amer. Cer Soc., 73 (1990), pp. 178–181.

    Article  CAS  Google Scholar 

  40. J.A. Yeomans and T.F. Page,J. Mat. Sci., 25 (5) (1990), pp. 2312–2320.

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

C. Odegard earned his Ph.D. in materials science and engineering at the University of Notre Dame in 1995. He is currently a research associate in the Materials Center for Synthesis and Processing at the University of Texas at El Paso.

A. Bronson earned his Ph.D. in metallurgical engineering at Ohio State University in 1977. He is currently a professor in the Department of Metallurgical and Materials Engineering and director of the Materials Center for Synthesis and Processing at the University of Texas at El Paso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odegard, C., Bronson, A. The reactive liquid processing of ceramic-metal composites. JOM 49, 52–54 (1997). https://doi.org/10.1007/BF02914716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914716

Keywords

Navigation