Skip to main content
Log in

Effect of Solute Diffusion on Dendrite Growth in the Molten Pool of Al-Cu Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A cellular automaton (CA)–finite difference model is developed to simulate dendrite growth and solute diffusion during solidification process in the molten pool of Al-Cu alloy. In order to explain the interaction between the dendritic growth and solute distribution, a series of CA simulations with different solute diffusion velocity coefficients are carried out. It is concluded that the solute concentration increases with dendrite growing and solute accumulation in the dendrite tip. Converged value of the dendrite tip growth velocity is about 480 μm/s if the mesh size is refined to 2 μm or less. Growth of the primary dendrite and the secondary dendrite is mainly influenced by solute diffusion at the dendrite tips. And growth of secondary and tertiary dendrites is mainly influenced by solute diffusion at interdendrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.G.R. Brown and N.B. Bruce: Scripta Metall. Mater., 1995, vol. 32, pp. 241–6.

    Article  Google Scholar 

  2. S.A. David, S.S. Babu, and J.M. Vitek: Trans. JWRI, 1996, vol. 25, pp. 127–43.

    Google Scholar 

  3. M.A. Martorano, C. Beckermann, and C.A. Gandin: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1657–74.

    Article  Google Scholar 

  4. C.A. Gandin and M. Rappaz: Acta Mater., 1997, vol. 45, pp. 2187–95.

    Article  Google Scholar 

  5. T.M. Wang, S.W. Cai, J. Li, J.J. Xu, Z.N. Chen, J. Zhu, Z.Q. Cao, and T.J. Li: China Foundry, 2010, vol. 7, pp. 61–7.

    Google Scholar 

  6. M. Bedel, G. Reinhart, A.A. Bogno, C.A. Gandin, S. Jacomet, E. Boller, H. Nguyen-Thi, and H. Henein: Acta Mater., 2015, vol. 89, pp. 234–46.

    Article  Google Scholar 

  7. S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, and P.D. Lee: Acta Mater., 2014, vol. 79, pp. 168–80.

    Article  Google Scholar 

  8. K.P. Young and D.H. Kerkwood: Metall. Trans. A, 1975, vol. 6, pp. 197–205.

    Article  Google Scholar 

  9. Y. Miyata, T. Suzuki, and J.I. Uno: Metall. Trans. A, 1985, vol. 16, pp. 1799–1805.

    Article  Google Scholar 

  10. A. Farzadi, M. Doquang, S. Serajzadeh, A.H. Kokabi, G. Amberg: Model. Simul. Mater. Sci. Eng., 2008, vol. 16, pp. 1932–6.

    Article  Google Scholar 

  11. Y. Lu, C. Beckermann, and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320–34.

    Article  Google Scholar 

  12. W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, and Y. Wang: Comput. Mater. Sci., 2013, vol. 82, pp. 525–30.

    Article  Google Scholar 

  13. A. Choudhury, K. Reuther, E. Wesner, A. August, B. Nestler, and M. Rettenmayr: Comput. Mater. Sci., 2012, vol. 55, pp. 263–8.

    Article  Google Scholar 

  14. V. Fallah, M. Amoorezaei, N. Provatas, S.F. Corbin, and A. Khajepour: Acta Mater., 2012, vol. 60, pp. 1633–46.

    Article  Google Scholar 

  15. K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, and K. Fang: Model. Simul. Mater. Sci. Eng., 2014, vol. 22, pp. 15006–23.

    Article  Google Scholar 

  16. Y. Chen, X.B. Qi, D.Z. Li, X.H. Kang, and N.M. Xiao: Comput. Mater. Sci., 2015, vol. 104, pp. 155–61.

    Article  Google Scholar 

  17. K. Reuther and M. Rettenmayr: J. Comput. Phys., 2014, vol. 279, pp. 63–6.

    Article  Google Scholar 

  18. Y. Yang, J.W. Garvin, and H.S. Udaykumar: Int. J. Heat Mass Transf., 2005, vol. 48, pp. 5270–83.

    Article  Google Scholar 

  19. L. Tan and N. Zabaras: J. Comput. Phys., 2007, vol. 226, pp. 131–55.

    Article  Google Scholar 

  20. X.H. Zhan, Z.B. Dong, Y.H. Wei, and R. Ma: J. Cryst. Growth, 2009, vol. 311, pp. 4778–83.

    Article  Google Scholar 

  21. X.H. Zhan, Y.H. Wei, and Z.B. Dong: J. Mater. Process. Technol., 2008, vol. 208, pp. 1–8.

    Article  Google Scholar 

  22. Y.H. Wei, X.H. Zhan, Z.B. Dong, and L. Yu: Sci. Technol. Weld. Join., 2013, vol. 12, pp. 138–46.

    Article  Google Scholar 

  23. A.B. Dong, S.J. Wang, R. Ma, Y.H. Wei, K.J. Song, and G.F. Zhai: J. Mater. Sci. Technol. (Shenyang, China), 2011, vol. 27, pp. 183–8.

    Article  Google Scholar 

  24. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34, pp. 367–82.

    Article  Google Scholar 

  25. M.B. Cortie: Metall. Trans. B, 1993, vol. 24, pp. 1045–53.

    Article  Google Scholar 

  26. C.A. Gandin, J.L. Desbiolles, M. Rappaz, and P. Thevoz: Metall. Mater. Trans. A, 1999, vol. 30, pp. 3153–65.

    Article  Google Scholar 

  27. L. Beltran-Sanchez and D.M. Stefanescu: Int. J. Cast Met. Res., 2002, vol. 15, pp. 251–6.

    Article  Google Scholar 

  28. M.A. Zaeem and S.D. Felicelli: J. Mater. Sci. Technol., 2012, vol. 28, pp. 137–46.

    Article  Google Scholar 

  29. M.A. Zaeem, H. Yin, and S.D. Felicelli: Appl. Math. Model., 2013, vol. 37, pp. 3495–503.

    Article  Google Scholar 

  30. L. Wei, X. Lin, M. Wang, and W. Huang: Comput. Mater. Sci., 2012, vol. 54, pp. 66–74.

    Article  Google Scholar 

  31. M. Zhu, D. Sun, S. Pan, Q. Zhang, and D. Raabe: Model. Simul. Mater. Sci. Eng., 2014, vol. 22, pp. 384–7.

    Google Scholar 

  32. W. Tan and Y.C. Shin: Comput. Mater. Sci., 2015, vol. 98, pp. 446–58.

    Article  Google Scholar 

  33. X.F. Zhang and J.Z. Zhao: J. Cryst. Growth, 2014, vol. 391, pp. 52–8.

    Article  Google Scholar 

  34. R. Chen, Q. Xu, and B. Liu: Comput. Mater. Sci., 2015, vol. 105, pp. 90–100.

    Article  Google Scholar 

  35. H. Yin and S.D. Felicelli: Acta Mater., 2010, vol. 58, pp. 1455–65.

    Article  Google Scholar 

  36. H. Yin, S.D. Felicelli, and L. Wang: Acta Mater., 2011, vol. 59, pp. 3124–36.

    Article  Google Scholar 

  37. S.C. Michelic, J.M. Thuswaldner, and C. Bernhard: Acta Mater., 2010, vol. 58, pp. 2738–51.

    Article  Google Scholar 

  38. B. Jelinek, M. Eshraghi, S. Felicelli, J.F. Peters: Comput. Phys. Commun., 2014, vol. 185, pp. 939–47.

    Article  Google Scholar 

  39. M. Eshraghi, S.D. Felicelli, and B. Jelinek: J. Cryst. Growth, 2012, vol. 354, pp. 129–34.

    Article  Google Scholar 

  40. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253–62.

    Article  Google Scholar 

  41. C. Moore: Physica D (Amst., Neth.), 1998, vol. 111, pp. 27–41.

    Article  Google Scholar 

  42. C. Moore and J. Machta: J. Stat. Phys., 2000, vol. 99, pp. 661–90.

    Article  Google Scholar 

  43. H.B. Dong and P.D. Lee: Solid State Phenom., 2005, vol. 53, pp. 659–68.

    Google Scholar 

  44. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2471–85.

    Article  Google Scholar 

  45. S. Luo and M.Y. Zhu: Comput. Mater. Sci., 2013, vol. 71, pp. 10–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. U1637103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhan.

Additional information

Manuscript submitted January 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Gu, C., Liu, Y. et al. Effect of Solute Diffusion on Dendrite Growth in the Molten Pool of Al-Cu Alloy. Metall Mater Trans B 48, 2685–2694 (2017). https://doi.org/10.1007/s11663-017-1056-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1056-z

Keywords

Navigation