Skip to main content
Log in

Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 27 April 2017

Abstract

Desulfurization behavior was investigated based on a wide slag composition and working temperature range. Moreover, the rate-controlling step (RCS) for desulfurization with regard to the ladle-refining conditions and the transition of the RCS by changing the slag composition was systematically discussed. The desulfurization ratio reached an equilibrium value within approximately 15 minutes irrespective of the CaO/Al2O3 (=C/A = 1.3 to 1.9) and CaO/SiO2 (=C/S = 3.8 to 6.3) ratios. However, the desulfurization behavior of less basic slags (C/A = 1.1 or C/S = 1.9) exhibited a relatively sluggish [S]-decreasing rate as a function of time. The equilibrium S partition ratio increased with an increase in slag basicity (C/A and C/S ratio), not only due to an increase in sulfide capacity but also due to a decrease in oxygen activity in the molten steel. There was a good correlation between the calculated and measured S partition ratios at various slag compositions. However, the measured S partition ratio increased by adding 5 pct CaF2, followed by a constant value. Multiphase slag exhibited a relatively slow desulfurization rate compared to that of fully liquid slag, possibly due to a decrease in the effective liquid slag volume, interfacial reaction area, and a relatively slow slag initial melting rate due to a high melting point. The activation energy of the desulfurization process was estimated to be 58.7 kJ/mol, from which it was proposed that the desulfurization reaction of molten steel via CaO-Al2O3-SiO2-MgO-CaF2 ladle slag was generally controlled by the mass transfer of sulfur in the metal phase. However, there was a transitional period associated with the rate-controlling mechanism due to a change in the physicochemical properties of the slag. For slag with a viscosity greater than about 1.1 dPa·s and an equilibrium S partition ratio lower than about 400, the overall mass-transfer coefficient was affected by the slag properties. Hence, it was theoretically and experimentally confirmed that the RCS of the desulfurization process under secondary refining conditions was strongly dependent on thermodynamic driving forces as well as the viscosity of the slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. FACTSAGE is a trademark of Thermfact-CRCT (Montreal, Canada) and GTT-Technologies (Aachen, Germany).

  2. LECO is a trademark of LECO Corporation, St. Joseph, MI.

REFERENCES

  1. L.J.P. Olund, T.B. Lund, and B.H. Hedberg: Proceedings of the 5th International. Clean Steel Conference, Hungarian Mining and Metallurgical Society, Hungary, 1999, pp. 137–43.

  2. M. Hino, S. Kitagawa, and S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 36–42.

    Article  Google Scholar 

  3. S. He, G. Zhang, and Q. Wang: ISIJ Int., 2012, vol. 52, pp. 977–83.

    Article  Google Scholar 

  4. M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21.

    Article  Google Scholar 

  5. T.S. Kim and J.H. Park: ISIJ Int., 2014, vol. 54, pp. 2031–38.

    Article  Google Scholar 

  6. S. Ban-ya, M. Hobo, T. Kaji, T. Itoh, and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810–16.

    Article  Google Scholar 

  7. J. Ishida, K. Yamaguchi, S. Sugiura, K. Yamano, S. Hayakawa, and N. Demukai: Denki-Seiko, 1981, vol. 52, pp. 2–8.

    Article  Google Scholar 

  8. T. Ebisawa, A. Ishii, H. Tenma, H. Kawakami, and K. Kikuchi: Proceedings of the 7th ICVM, Japan, 1985.

  9. K. Schwerdtfeger: Arch. Eisenhuttenwes., 1983, vol. 54, p. 3.

    Google Scholar 

  10. R. Fruehan: Ladle Metallurgy, Principles and Practices, Iron & Steel Society (ISS), Warrendale, PA, 1985.

    Google Scholar 

  11. I. Sawada, T. Kitamura, and T. Ohashi: Proceedings of the Scaninject IV, MEFOS, Lulea, Sweden, 1986, p. 12.1.

  12. Q. Ying, L. Yun, and L. Liu: Proceedings of the Scaninject III, Part I, MEFOS, Lulea, Sweden, 1983, paper no. 21.

  13. T. Kitamura, K. Shibata, I. Sawada, and S. Kitamura: Proceedings of the 6th International Iron & Steel Congress (IISC), ISIJ, Japan, 1990, vol. 3, pp. 50–56.

  14. H. Kataoka and T. Miyauchi: Kagaku-Kogaku, 1969, vol. 33, pp. 181–86.

    Article  Google Scholar 

  15. J. Peter, K.D. Peaslee, D.G.C. Robertson, and B.G. Thomas: Proceedings of the AISTech 2005, AIST, Warrendale, PA, 2005, pp. 959–67.

  16. D.G.C. Robertson and B.B. Staples: Process Engineering of Pyrometallurgy, IMM, London, 1974, pp. 51–59.

    Google Scholar 

  17. F. Oeters: Metallurgie der Stahlherstellung, Verlag Stahleisen GmbH, Dusseldorf, and Springer-Verlag, Berlin, 1994.

    Google Scholar 

  18. M.G. Frohberg and A. Nillas: Trans. Iron Steel Inst. Jpn., 1969, vol. 9, p. 355.

    Google Scholar 

  19. J.X. Deng and F. Oeters: Proceedings of the 7th Japan-Germany Seminar on Fundamentals of Iron and Steelmaking, Verlag Stahleisen GmbH, Dusseldorf, 1987, p. 33.

  20. Y.H. Kim: Ph.D. Thesis, University of Strathclyde, Strathclyde, Glasgow, United Kingdom, 1978.

  21. B. Deo and P. Grieveson: Steel Res., 1986, vol. 57, pp. 514–19.

    Article  Google Scholar 

  22. B. Deo and P. Grieveson: Steel Res., 1988, vol. 59, pp. 263–68.

    Article  Google Scholar 

  23. J.C. Fulton and J. Chipman: Trans. TMS-AIME, 1959, vol. 215, p. 113.

    Google Scholar 

  24. K.M. Goldman, G. Derge, and W.D. Philbrook: Trans. TMS-AIME, 1954, vol. 200, pp. 534–40.

    Google Scholar 

  25. S. Ramachandran, T.B. King, and N.J. Grant: Trans. TMS-AIME, 1956, vol. 206, pp. 1549–53.

    Google Scholar 

  26. F. Patsiogiannis, U.B. Pal, and R.S. Bogan: ISIJ Int., 1994, vol. 34, pp. 140–49.

    Article  Google Scholar 

  27. R.J. Fruehan: Trans. Iron Steel Soc, 1985, vol. 6, pp. 43–49.

    Google Scholar 

  28. T.B. King: in Electric Furnace Steelmaking, C.R. Taylor, ed., Iron and Steel Society (ISS), Warrendale, PA, 1985.

  29. D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1086–94.

    Article  Google Scholar 

  30. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall, New York, NY, 1993.

    Google Scholar 

  31. P. Yan, X. Guo, S. Huang, J.V. Dyck, M. Guo, and B. Blanpain: ISIJ Int., 2013, vol. 53, pp. 459–67.

    Article  Google Scholar 

  32. X. Chushao and T. Xin: ISIJ Int., 1992, vol. 32, pp. 1081–83.

    Article  Google Scholar 

  33. V. Seshadri, C.A. da Silva, I.A. da Silva, and P. von Kruger: ISIJ Int., 1997, vol. 37, pp. 21–30.

    Article  Google Scholar 

  34. G.G. Roy, P.N. Chaudhary, R.K. Minj, and R.P. Goel: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 558–61.

    Article  Google Scholar 

  35. J.K. Jung and J.J. Pak: J. Kor. Inst. Met. Mater., 2000, vol. 38, pp. 585–90.

    Google Scholar 

  36. J.Y. Choi, D.J. Kim, and H.G. Lee: ISIJ Int., 2001, vol. 41, pp. 216–24.

    Article  Google Scholar 

  37. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980.

    Google Scholar 

  38. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking, Tohoku University Press, Sendai, 2010.

  39. www.factsage.com. Accessed Dec. 2015.

  40. C.W. Bale, E. Belisle, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295–311.

    Article  Google Scholar 

  41. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 953–60.

    Article  Google Scholar 

  42. J.S. Park and J.H. Park: Steel Res. Int., 2014, vol. 85, pp. 1303–09.

    Article  Google Scholar 

  43. S.K. Kwon, Y.M. Kong, and J.H. Park: Met. Mater. Int., 2014, vol. 20, pp. 959–66.

    Article  Google Scholar 

  44. Y.S. Han and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 235–42.

    Article  Google Scholar 

  45. J.H. Heo, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1154–61.

    Article  Google Scholar 

  46. J.S. Park, D.H. Kim, and J.H. Park: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1974–81.

    Article  Google Scholar 

  47. Y.S. Han, D.R. Swinbourne, and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2449–2557.

    Article  Google Scholar 

  48. S.K. Kwon, J.S. Park, and J.H. Park: ISIJ Int., 2015, vol. 55, pp. 2589–96.

    Article  Google Scholar 

  49. E.H. Jeong, C.W. Nam, K.H. Park, and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1103–12.

    Article  Google Scholar 

  50. J.H. Shin and J.H. Park: Metall. Mater. Trans. E, 2016, vol. 3E, pp. 218–26.

    Google Scholar 

  51. J.A. Duffy and M.D. Ingram: J. Am. Chem. Soc., 1971, vol. 93, 6448–54.

    Article  Google Scholar 

  52. J.A. Duffy: J. Non-Cryst. Solids, 1989, vol. 109, pp. 35–39.

    Article  Google Scholar 

  53. J.A. Duffy: J. Chem. Educ., 1996, vol. 73, pp. 1138–42.

    Article  Google Scholar 

  54. T. Nakamura, Y. Ueda, and J.M. Toguri: J. Jpn. Inst. Met., 1986, vol. 50, pp. 456–61.

    Article  Google Scholar 

  55. D.J. Sosinsky and I.D. Sommerville: Metall. Trans. B, 1986, vol. 17B, pp. 331–37.

    Article  Google Scholar 

  56. R.W. Young, J.A. Duffy, G.J. Hassall, and Z. Xu: Ironmaking and Steelmaking, 1992, vol. 19, pp. 201–19.

    Google Scholar 

  57. J.H. Park and D.J. Min: Mater. Trans., 2006, vol. 47, pp. 2038–43.

    Article  Google Scholar 

  58. J.H. Park, G.H. Park, and Y.E. Lee: ISIJ Int., 2010, vol. 50, pp. 1078–83.

    Article  Google Scholar 

  59. G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Article  Google Scholar 

  60. G.J.W. Kor and F.D. Richardson: Trans. TMS-AIME, 1969, vol. 245, pp. 319–27.

    Google Scholar 

  61. A. Bronson and G.R.S.T. Pierre: Metall. Trans. B, 1979, vol. 10B, pp. 375–80.

    Article  Google Scholar 

  62. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723–29.

    Article  Google Scholar 

  63. J.H. Park and D.J. Min: ISIJ Int., 2004, vol. 44, pp. 223–28.

    Article  Google Scholar 

  64. J.H. Park and D.J. Min: J. Non-Cryst. Solids, 2004, vol. 337, pp. 150–56.

    Article  Google Scholar 

  65. A. Ghosh: Secondary Steelmaking—Principles and Applications, CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  66. K.J. Graham and G.A. Irons: Proceedings of the SCANMET III, June 8–11, 2008, MEFOS, Lulea, Sweden, 2008, vol. 1, pp. 385–96.

  67. S. Seetharaman: Fundamentals of Metallurgy, Woodhead Publishing Limited, Cambridge, United Kingdom, 2005.

    Book  Google Scholar 

  68. J.W. Robinson, Jr. and R.D. Pehlke: Metall. Trans. B, 1974, vol. 5B, pp. 1041–51.

    Article  Google Scholar 

  69. S. Asai, M. Kawachi, and I. Muchi: Proceedings of the Scaninject III, June 15–17, 1983, MEFOS, Lulea, Sweden, 1983, Part 1, paper no. 12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted September 3, 2016.

An erratum to this article is available at http://dx.doi.org/10.1007/s11663-017-0980-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.G., Shin, J.H., Chung, Y. et al. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes. Metall Mater Trans B 48, 2123–2135 (2017). https://doi.org/10.1007/s11663-017-0948-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0948-2

Keywords

Navigation