Skip to main content
Log in

Stability of Fluorine-Free CaO-SiO2-Al2O3-B2O3-Na2O Mold Fluxes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

B2O3 and Na2O are key components of fluorine-free mold fluxes for continuous casting, but both are highly volatile, which affects the flux stability. This paper investigated the evaporation of the SiO2-CaO-Al2O3-B2O3-Na2O fluxes (Na2O: 6 to 10 wt pct, CaO/SiO2 ratio: 0.8 to 1.3) in the temperatures ranging from 1573 K to 1673 K (1300 °C to 1400 °C) using thermogravimetric analysis. The weight loss as a result of the flux evaporation increased with the increasing temperature for all fluxes. The rate of evaporation was found to be very small for the Na2O-free flux but significantly increased with the addition of Na2O. The high evaporation rate of fluxes in the presence of B2O3 and Na2O was attributed to the formation of highly volatile NaBO2. Changing the ratio of CaO/SiO2, however, did not affect the rate of evaporation. Kinetic analysis of the evaporation processes demonstrated that external mass transfer contributed to the rate of evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.H. Wen, S. Sridhar, P. Tang, X. Qi and Y.Q. Liu, ISIJ Int, 2007, vol. 47, pp. 1117-1125.

    Article  Google Scholar 

  2. A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia and J. Gisby, ISIJ Int, 2005, vol. 45, pp. 1051-1058.

    Article  Google Scholar 

  3. J.L. Klug, R. Hagemann, N.C. Heck, A.C.F. Vilela, H.P. Heller and P.R. Scheller, Steel Res Int, 2012, vol. 83, pp. 1186-1193.

    Article  Google Scholar 

  4. M. Persson, S. Seetharaman and S. Seetharaman, ISIJ Int, 2007, vol. 47, pp. 1711-1717.

    Article  Google Scholar 

  5. Z. Wang, Q.F. Shu and K.C. Chou, Steel Res Int, 2013, vol. 84, pp. 766-776.

    Article  Google Scholar 

  6. Z.T. Zhang, G.H. Wen and Y.Y. Zhang, Int J. Min. Met. Mater., 2011, vol. 18, pp. 150-158.

    Article  Google Scholar 

  7. S.Y. Choi, D.H. Lee, D.W. Shin, S.Y. Choi, J.W. Cho and J.M. Park, J Non-Cryst Solids, 2004, vol. 345, pp. 157-160.

    Article  Google Scholar 

  8. C.B. Shi, M.D. Seo, J.W. Cho and S.H. Kim, Metall. Mater. Trans. B, 2014, vol. 45, pp. 1081-1097.

    Article  Google Scholar 

  9. R.G.C. Beerkens, Journal of the American Ceramic Society, 2001, vol. 84, pp. 1952-1960.

    Article  Google Scholar 

  10. M. Li, T. Utigard and M. Barati, Metall. Mater. Trans. B, 2015, vol. 46, pp. 74-82.

    Article  Google Scholar 

  11. Z.T. Zhang, S. Sridhar and J. W. Cho, ISIJ Int, 2011, vol. 51, pp. 80-87.

    Article  Google Scholar 

  12. V.L. Stolyarova, G.G. Ivanov and S.V. Stolyar, Glass Phys Chem, 2002, vol. 28, pp. 112-116.

    Article  Google Scholar 

  13. M. Hanao, ISIJ Int, 2013, vol. 53, pp. 648-654.

    Article  Google Scholar 

  14. J. Li, Z. Zhang, L. Liu, W. Wang and X. Wang, ISIJ Int, 2013, vol. 53, pp. 1696-1703.

    Article  Google Scholar 

  15. J. Yang, J. Q. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. X. Cai and Y. Kashiwaya, ISIJ Int, 2016, vol. 56, pp. 574-583.

    Article  Google Scholar 

  16. L. Zhou, W. Wang, J. Wei and K. Zhou, ISIJ Int, 2015, vol. 55, pp. 821-829.

    Article  Google Scholar 

  17. W.L. Wang, K.Z. Gu, L.J. Zhou, F.J. Ma, I. Sohn, D.J. Min, H. Matsuura and F. Tsukihashi, ISIJ Int, 2011, vol. 51, pp. 1838-1845.

    Article  Google Scholar 

  18. B.X. Lu, W.L. Wang, J. Li, H. Zhao and D.Y. Huang, Metall. Mater. Trans. B, 2013, vol. 44, pp. 365-377.

    Article  Google Scholar 

  19. L. Wang, Y. Cui, J. Yang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki and O. Ostrovski, Steel Res Int, 2015, vol. 86, pp. 670-677.

    Article  Google Scholar 

  20. N. Takahira, M. Hanao and Y. Tsukaguchi, ISIJ Int, 2013, vol. 53, pp. 818-822.

    Article  Google Scholar 

  21. W. L. Wang, K. Blazek and A. Cramb, Metall. Mater. Trans. B, 2008, vol. 39, pp. 66-74.

    Article  Google Scholar 

  22. L. Wang, C. Zhang, D. X. Cai, J. Zhang, Y. Sasaki and O. Ostrovski, Metall. Mater. Trans. B, 2016, DOI:10.1007/s11663-016-0816-5.

    Google Scholar 

  23. Wang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang and D. Cai, Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, TMS, Seattle, 2016.

  24. V. Stolyarova, Open Thermodynamics Journal, 2013, vol. 7, pp. 57-70.

    Article  Google Scholar 

  25. Y. Kashiwaya, C. E. Cicutti, A. W. Cramb and K. Ishii, ISIJ Int, 1998, vol. 38, pp. 348-356.

    Article  Google Scholar 

  26. K.C. Mills, ISIJ Int, 1993, vol. 33, pp. 148-155.

    Article  Google Scholar 

  27. Y.Q. Sun and Z.T. Zhang, Metall. Mater. Trans. B, 2015, vol. 46, pp. 1549-1554.

    Article  Google Scholar 

  28. X.H. Huang, J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang and Z.T. Zhang, Ironmak Steelmak, 2014, vol. 41, pp. 67-74.

    Article  Google Scholar 

  29. M. Asano and Y. Yasue, J Nucl Mater, 1986, vol. 138, pp. 65-72.

    Article  Google Scholar 

  30. E.T. Turkdogan, Physical Chemistry of High Temperature Technology, 1980,New York: Academic Press.

    Google Scholar 

  31. B. Mysen, Eur J Mineral, 2003, vol. 15, pp. 781-802.

    Article  Google Scholar 

  32. J. Szekely and N.J. Themelis, Rate phenomena in process metallurgy, 1st ed., Wiley-Interscience New York, NY, 1971.

    Google Scholar 

  33. R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport phenomena, 1st ed., John Wiley & Sons, New York, 2007.

    Google Scholar 

  34. J.D. Mackenzie, T Faraday Soc, 1956, vol. 52, pp. 1564-1568.

    Article  Google Scholar 

  35. K. Shimizu, Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, Pensylvania, 1998.

    Google Scholar 

  36. G. Kolykov, Stroenie stekla, Proceedings of the Conference on Glass Structure, pp. 234–244, 1955.

Download references

Acknowledgments

This project was financially supported by Baosteel through BAJC, Abel Metal, and Australian Research Council (ARC LP130100773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Additional information

Manuscript submitted October 11, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, J., Sasaki, Y. et al. Stability of Fluorine-Free CaO-SiO2-Al2O3-B2O3-Na2O Mold Fluxes. Metall Mater Trans B 48, 1055–1063 (2017). https://doi.org/10.1007/s11663-016-0907-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0907-3

Keywords

Navigation