Skip to main content
Log in

The Development of CaO-SiO2-B2O3-based Fluorine-Free Mold Flux for a Continuous Casting Process

  • Special Issue: Revisiting Materials Challenges from the Perspective of Energy Applications
  • Published:
Metallurgical and Materials Transactions E

Abstract

Designing and developing high-performance fluorine-free (F-free) mold flux has become a hot topic in steel continuous casting processes, with concerns of environment protection and energy saving. In conventional commercial mold flux, fluorine plays important roles on the properties as it works as a fluxing agent; however, it tends to cause serious environmental and health problems. In this paper, a new F-free mold flux based on the CaO-SiO2-B2O3 slag system has been introduced through summarizing previous works. The melting temperature range of F-free mold flux decreases with the addition of Na2O/Li2O and B2O3; the viscosity and heat flux decrease with the increase of basicity and Na2O/Li2O, as well as the decrease of B2O3 contents. Also, the crystallization temperatures of F-free mold fluxes increase with the increase of basicity and Na2O/Li2O content. The analyses of EDS and XRD show that Ca11Si4B2O22 and Ca14Mg2(SiO4)8 are the two main precipitated crystalline phases in F-free mold fluxes, and that the Ca11Si4B2O22 is a common and stable crystalline phase in the designed F-free mold fluxes system that shows the potential to replace Ca4Si2O7F2 in conventional flourine-containing mold fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Park, D. Min, H. Song, Metall. Mater. Trans. 33B, 723–729 (2002)

    Article  Google Scholar 

  2. H. Kim, I. Sohn, ISIJ Int. 51, 1–8 (2011)

    Article  Google Scholar 

  3. T. Watanabe, H. Fukuyama, K. Nagata, ISIJ Int. 42, 489–497 (2002)

    Article  Google Scholar 

  4. T. Watanabe, H. Fukuyama, K. Nagata, M. Susa, Metall. Mater. Trans. 31B, 1273–1281 (2000)

    Article  Google Scholar 

  5. H. Nakada, H. Fukuyama, K. Nagata, ISIJ Int. 46, 1660–1667 (2006)

    Article  Google Scholar 

  6. K. Nagata, H. Fukuyama, Steel Res. Int. 74, 31–35 (2003)

    Google Scholar 

  7. M. Persson, S. Sridhar, S. Seetharaman, ISIJ Int. 47, 1711–1717 (2007)

    Article  Google Scholar 

  8. Z. Zhang, G. Wen, Y. Zhang, Int. J. Min. Metall. Mater. 18, 150–158 (2011)

    Article  Google Scholar 

  9. J. Gao, G. Wen, Q. Liu, W. Tan, P. Tang, J. Non-Cryst. Solids 409, 8–13 (2015)

    Article  Google Scholar 

  10. K. Mills, A. Fox, ISIJ Int. 43, 1479–1486 (2003)

    Article  Google Scholar 

  11. C. Shi, M. Seo, J. Cho, S. Kim, Metall. Mater. Trans. 45B, 1081–1097 (2014)

    Article  Google Scholar 

  12. X. Qi, G. Wen, P. Tang, J. Iron Steel Res. Int. 17, 6–10 (2010)

    Article  Google Scholar 

  13. Z. Zhang, J. Li, P. Liu, J. Iron Steel Res. Int. 18, 31–37 (2011)

    Article  Google Scholar 

  14. H. Nakada, K. Nagata, ISIJ Int. 46, 441–449 (2006)

    Article  Google Scholar 

  15. Z. Wang, Q. Shu, K. Chou, Steel Res. Int. 84, 766–776 (2013)

    Article  Google Scholar 

  16. L. Chen, G. Wen, C. Yang, F. Mei, C. Shi, P. Tang, Ironmak. Steelmak. 42, 105–111 (2015)

    Article  Google Scholar 

  17. Q. Wang, Y. Lu, S. He, K. Mills, Z.S. Li, Ironmak. Steelmak. 38, 297–301 (2011)

    Article  Google Scholar 

  18. Y. Lu, G. Zhang, M. Jiang, H. Liu, T. Li, J. Environ. Sci. 23, 167–169 (2011)

    Article  Google Scholar 

  19. E. Benavidez, L. Santini, M. Valentini, and E. Brandaleze: 11th International Congress on Metallurgy & Materials SAM/CONAMET, 2011, pp. 389–96

  20. A. Fox, K. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, J. Gisby, ISIJ Int. 45, 1051–1058 (2005)

    Article  Google Scholar 

  21. F. Zhang, Y. Chen, Y. Wang, F. Dong, M. Wu, J. Rare Earths 29, 173–177 (2011)

    Article  Google Scholar 

  22. A. Arefpour, A. Monshi, T. Khayamian, A. Saidi, Engineering 4, 435–444 (2012)

    Article  Google Scholar 

  23. B. Lu, W. Wang, J. Li, H. Zhao, D. Huang, Metall. Mater. Trans. 44B, 365–377 (2013)

    Article  Google Scholar 

  24. L. Zhou, W. Wang, J. Wei, B. Lu, ISIJ Int. 53, 664–671 (2013)

    Article  Google Scholar 

  25. J. Wei, W. Wang, L. Zhou, D. Huang, H. Zhao, F. Ma, Metall. Mater. Trans. 45B, 643–652 (2014)

    Article  Google Scholar 

  26. L. Zhou, W. Wang, B. Lu, G. Wen, J. Yang, Met. Mater. Int. 21, 126–133 (2015)

    Article  Google Scholar 

  27. L. Zhou, W. Wang, J. Wei, K. Zhou, ISIJ Int. 55, 821–829 (2015)

    Article  Google Scholar 

  28. L. Zhou, W. Wang, K. Zhou, ISIJ Int. 55, 1916–1924 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Foundation of China (51504294, 51322405), and the Opening Foundation of the State Key Laboratory of Advanced Metallurgy (KF14-10) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted February 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, W. The Development of CaO-SiO2-B2O3-based Fluorine-Free Mold Flux for a Continuous Casting Process. Metallurgical and Materials Transactions E 3, 139–144 (2016). https://doi.org/10.1007/s40553-016-0080-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0080-2

Keywords

Navigation