Skip to main content
Log in

Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the “Sb” component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1. M. Filella, N. Belzile, and Y.W. Chen: Earth-Sci. Rev., 2002, vol. 57, pp. 125–76.

    Article  Google Scholar 

  2. 2. X. Wang, J.P. Wang, C.H. Liu, and F.F. Zhang: China Met. Bull., 2014, vol. 23, pp. 6–10 (in Chinese with English abstract).

    Google Scholar 

  3. 3. M.C. He, X.Q. Wang, F.C. Wu, and Z.Y. Fu: Sci. Total Environ., 2012, vols. 421–422, pp. 41–45.

    Article  Google Scholar 

  4. 4. H. Binz and B. Friedrich: Chem. Ingen. Techn., 2015, vol. 87, pp. 1569–79.

    Article  Google Scholar 

  5. 5. M. Lundgren, U. Leimalm, G. Hyllander, L.S. Ökvist, and B. BjÖrkman: ISIJ Int., 2010, vol. 50, pp. 1570—80.

    Article  Google Scholar 

  6. 6. R.A. Shawabkeh: Hydrometallurgy, 2010, vol. 104, pp. 61—65.

    Article  Google Scholar 

  7. 7. Y.L. Zhang and E. Kasai: ISIJ Int., 2005, vol. 45, pp. 1813—19.

    Article  Google Scholar 

  8. 8. C.S. Chen, Y.J. Shih, and Y.H. Huang: Waste Management, 2016, vol. 52, pp. 212—20.

    Article  Google Scholar 

  9. 9. Z.F. Xu, Q. Li, and H.P. Nie: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. s176—s181.

    Article  Google Scholar 

  10. 10. C. Vandecasteele, V. Dutré, D. Geysen, and G. Wauters: Waste Management, 2002, vol. 22, pp. 143—46.

    Article  Google Scholar 

  11. 11. V. Montenegro, H. Sano, and T. Fujisawa: Miner. Eng., 2013, vol. 49, pp. 184—89.

    Article  Google Scholar 

  12. 12. Y. Chen, T. Liao, G.B. Li, B.Z. Chen, and X.C. Shi: Miner. Eng., 2012, vol. 39, pp. 23—28.

    Article  Google Scholar 

  13. 13. H.L. Yang, M.C. He, and X.Q. Wing: Environ. Geochem. Health, 2015, vol. 37, pp. 21—33.

    Article  Google Scholar 

  14. 14. M.P. Taylor, S.A. Mould, L.J. Kristensen, and M. Rouillon: Environ. Res., 2014, vol. 135, pp. 296—303.

    Article  Google Scholar 

  15. 15. D. Dupont, S. Arnout, P.T. Jones, and K. Binnemans: J. Sustainable Metall., 2016, vol. 2, pp. 79—103.

    Article  Google Scholar 

  16. 16. J. Chen, G. Xie, and D.P. Zhao: Chin. J. Inorg. Analyt. Chem., 2014, vol. 4, pp. 11—15 (in Chinese with English abstract).

    Google Scholar 

  17. 17. G.A. Brooks, W.J. Rankin, and N.B. Gray: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 873–84.

    Article  Google Scholar 

  18. 18. H.B. Tang, Q.W. Qin, Y. Guo, X. Zheng, P. Xue, and G.Q. Li: Conserv. Utiliz. Miner. Res., 2014, vol. 3, pp. 35—38 (in Chinese with English abstract).

    Google Scholar 

  19. 19. L. Li, R.J. Zhang, B. Liao, and X.F. Xie: Chin. J. Process Eng., 2014, vol. 14, pp. 71—77 (in Chinese with English abstract).

    Google Scholar 

  20. H.B. Yuan, Y.Y. Zhu, and J.B. Zhang: J. Central South Univ. (Sci. Technol.), 2013, vol. 44, pp. 2200—05 (in Chinese with English abstract).

    Google Scholar 

  21. 21. A. Aracena, O. Jerez, and C. Antonucci: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 294—300.

    Article  Google Scholar 

  22. 22. R.P. Padilla, G. Ramírez, and M.C. Ruiz: Metall. Mater. Trans. B, 2010, vol. 40B, pp. 1284-92.

    Article  Google Scholar 

  23. 23. J.E. Mauser. Metall. Mater. Trans. B, 1982, vol. 13B, pp. 511–13.

    Article  Google Scholar 

  24. 24. G.A. Brooks, W.J. Rankin, and N.B. Gray: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 865–71.

    Article  Google Scholar 

  25. 25. J.S. Wang: Copper Ind. Eng., 2005, vol. 1, pp. 27—28 (in Chinese with English abstract).

    Google Scholar 

  26. 26. S. Kashiwakura, H. Ohno, K. Matsubae-Yokoyama, Y. Kumagai, H. Kubo, and T. Nagasaka: J. Hazardous Mater., 2010, vol. 181, pp. 419—25.

    Article  Google Scholar 

  27. 27. X.Y. Guo, J. Shi, Y. Yia, Q.H. Tian, and D. Li: J. Environ. Chem. Eng., 2015, vol. 3, pp. 2236—42.

    Article  Google Scholar 

  28. 28. I. Mihajlovic, N. Strbac, Z. Zivkovic, R. Kovacevic, and M. Stehernik: Miner. Eng., 2007, vol. 20, pp. 26—33.

    Article  Google Scholar 

  29. 29. X.X. Jiang, G.X. He, X.G. Li, and Q. Lu: Hydrometall. China, 2010, vol. 29, pp. 199—202 (in Chinese with English abstract).

    Google Scholar 

  30. 30. E. Vircikova and M. Havlik: JOM, 1999, vol. 51, pp. 20—23.

    Article  Google Scholar 

  31. FactSage 7.0: FactPS—FACT Pure Substances Database, Thermfact/CRCT and GTT Technologies, 2015.

Download references

Acknowledgments

The authors express thanks to the National Science Fund for Distinguished Regional Scholars (Grant No. 51564034) and Scientific and Technological Leading Talent Projects in Yunnan Province (Grant No. 2015HA019) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li.

Additional information

Manuscript submitted July 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, DP., Li, L. & Tan, C. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO. Metall Mater Trans B 48, 1308–1314 (2017). https://doi.org/10.1007/s11663-016-0896-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0896-2

Keywords

Navigation