Skip to main content
Log in

Recovery of antimony from antimony-bearing dusts through reduction roasting process under CO—CO2 mixture gas atmosphere after firstly oxidation roasted

含锑烟尘氧化焙烧处理后CO—CO2 混合气体中锑资源的还原焙烧法回收

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted. CO—CO2 mixture gas was used as reducing agent, and the antimony-containing phase was reduced into Sb4O6, volatilized into smoke, and finally recovered through the cooling cylinder. The antimony recovery rate increased from 66.00 wt% to 73.81 wt% in temperature range of 650 to 800 °C, and decreased with temperature increased further to 900 °C due to the reduction of Sb4O6 to the nonvolatile Sb. Similarly, the CO partial pressure also played a double role in this test. Under optimized conditions of roasting temperature of 800 °C, CO partial pressure of 7.5 vol% and roasting time of 120 min, 98.40 wt% of arsenic removal rate and 80.40 wt% antimony recovery rate could be obtained. In addition, the “As2O3” product could be used for preparing ferric arsenate which realized the harmless treatment of it.

摘要

研究主要针对含锑烟尘经氧化焙烧处理后CO—CO2 混合气体中锑资源的还原焙烧法回收进行了 探讨。以CO—CO2 混合气体作为还原剂,过程中锑物相还原为Sb4O6 并进入气相,最后通过冷凝收尘 方式实现其回收。温度由650 °C 升高至800 °C 时,锑回收率从66.00 wt%增至73.81 wt%,当温度进 一步升高到900 °C 时,Sb4O6 被进一步还原为非挥发性金属锑,锑回收率降低。同样,CO 分压对锑 的挥发回收亦起双重作用。在最优焙烧条件下,即焙烧温度800 °C、CO 分压7.5 vol%及焙烧时间120 min 时,锑烟尘中砷挥发率可达98.40 wt%,同时锑回收率亦可达80.40 wt%。此外,挥发脱除的“As2O3” 烟尘可用于制备砷酸铁,以实现其无害化处理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BINZ F, FRIEDRICH B. Recovery of antimony trioxide flame retardants from lead refining residues by slag conditioning and fuming [J]. Chemie Ingenieur Technik, 2015, 87(11): 1569–1579. DOI: 10.1002/cite.201500071.

    Article  Google Scholar 

  2. ANDERSON C G. The metallurgy of antimony [J]. Chemie der Erde-Geochemistry, 2012, 72: 3–8. DOI: 10.1016/j.chemer.2012.04.001.

    Article  Google Scholar 

  3. WEN Bing, ZHOU Jian-wei, ZHOU An-guo, LIU Cun-fu, XIE Li-na. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures [J]. Science of the Total Environment, 2016, 569–570: 114–122. DOI: 10.1016/j.scitotenv.2016.05.124.

    Article  Google Scholar 

  4. SHANGGUAN Yu-xian, ZHAO Long, QIN Yu-sheng, HOU Hong, ZHANG Nai-ming. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments [J]. Ecotoxicology and Environmental Safety, 2016, 133: 1–9. DOI: 10.1016/j.ecoenv.2016.06.030.

    Article  Google Scholar 

  5. HENCKENS M L C M, DRIESSEN P P J, WORRELL E. How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use [J]. Resources, Conservation and Recycling, 2016, 108: 54–62. DOI: 10.1016/j.resconrec.2016.01.012.

    Article  Google Scholar 

  6. PADILLA P R, RAMÍREZ G, RUIZ M C. High-temperature volatilization mechanism of stibnitein nitrogen-oxygen atmospheres [J]. Metallurgical and Materials Transactions B, 2010, 40(6): 1284–1292. DOI: 10.1007/s11663-010-9429-6.

    Article  Google Scholar 

  7. HENCKENS M L C M, DRIESSEN P P J, WORRELL E. Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals [J]. Resources, Conservation and Recycling, 2014, 93: 1–8. DOI: 10.1016/j.resconrec.2014.09.012.

    Article  Google Scholar 

  8. TANG Shi-jia, GAO Guang-ming, PENG En-sheng, SUN Zhen-jia. Fractal feature of western fracture zone in Xikuangshan antimony mine and its geological significance [J]. Journal of Central South University of Technology, 2000, 7(4): 212–215. DOI: 10.1007/s11771-000-0056-2.

    Article  Google Scholar 

  9. SHAWABKEH R A. Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust [J]. Hydrometallurgy, 2010, 104(1): 61–65. DOI: 10.1016/j.hydromet.2010.04.014.

    Article  Google Scholar 

  10. LUNDGREN M, LEIMALM U, HYLLANDER G, ÖKVIST L S, BJÖRKMAN B. Off-gas dust in an experimental blast furnace, Part 2: Relation to furnace conditions [J]. ISIJ International, 2010, 50: 1570–1580. DOI: 10.2355/isijinternational.50.1560. 10.1007/s11771-014-2168-0.

    Article  Google Scholar 

  11. HOU Xiao-chuan, YANG Yun-de, LI He, ZENG li, XIAO Lian-sheng. Kinetics study of leaching arsenic from Ni-Mo ore roasting in dust mixture of hydrochloric and sulfuric acids [J]. Journal of Central South University, 2014, 21: 2176–2183.

    Article  Google Scholar 

  12. CHAI Li-yuan, SHI Mei-qing, LIANG Yan-jie, TANG Jing-wen, LI Qing-zhu. Behavior, distribution and environmental influence of arsenic in a typical lead smelter [J]. Journal of Central South University, 2015, 22: 1276–1286. DOI: 10.1007/s11771-015-2644-1.

    Article  Google Scholar 

  13. YUAN Hai-bin, ZHU Yu-yan, ZHANG Ji-bin. Process of high-arsenic dust containing tin volatilization from DC submerged arc furnace [J]. Journal of Central South University: Science and Technology, 2013, 44(6): 2200–2205. (in Chinese)

    Google Scholar 

  14. ARACENA A, JEREZ O, ANTONUCCI C. Senarmontite volatilization kinetics in nitrogen atmosphere at roasting/melting [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 294–300. DOI: 10.1016/S1003- 6326(16)64117-1.

    Article  Google Scholar 

  15. PADILLA R P, RAMÍREZ G, RUIZ M C. High-temperature volatilization mechanism of stibnite in nitrogen-oxygen atmospheres [J]. Metallurgical and Materials Transactions B, 2010, 41(6): 1284–1292. DOI: 10.1007/s11663-010-9429-6.

    Article  Google Scholar 

  16. LI Lei, ZHANG Ren-jie, LIAO Bin, XIE Xiao-feng. Separation of As from As and Sb contained smoke dust by selective oxidation [J]. The Chinese Journal of Process Engineering, 2014, 14(1): 71–77. (in Chinese)

    Google Scholar 

  17. TANG Hai-bo, QIN Qing-wei, GUO Yong, ZHENG Xin, XUE Ping, LI Guang-qiang. Pretreatment of high arsenic and antimony smelting dust for arsenic removal using roasting process [J]. Conservation and Utilization of Mineral Resources, 2014(3): 35–38. (in Chinese)

    Google Scholar 

  18. BROOKS G A, RANKIN W J, GRAY N B. Thermal separation of arsenic and antimony oxides [J]. Metallurgical and Materials Transactions B, 1994, 25(6): 873–884. DOI: 10.1007/bf02662769.

    Article  Google Scholar 

  19. MAUSER J E. Heteronuclear compounds of arsenic and antimony [J]. Metallurgical and Materials Transactions B, 1982, 13(3): 511–513. DOI: 10.1007/BF02667768.

    Article  Google Scholar 

  20. BROOKS G A, RANKIN W J. Solid-solution formation between arsenic and antimony oxides [J]. Metallurgical and Materials Transactions B, 1994, 25(6): 865–871. DOI: 10.1007/BF02662768.

    Article  Google Scholar 

  21. WANG Jiang-sheng. Reclaiming valuable metals from copper converter dust [J]. Copper Industrial Engineering, 2005(1): 27–28. (in Chinese)

    Google Scholar 

  22. KASHIWAKURA S, OHNO H, MATSUBAE-YOKOYAMA K, KUMAGAI Y, KUBO H, NAGASAKA T. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent [J]. Journal of Hazardous Materials, 2010, 181(1–3): 419–25. DOI: 10.1016/j.jhazmat.2010.05.027.

    Article  Google Scholar 

  23. GUO Xue-yi, SHI Jing, YI Yu, TIAN Qing-hua, LI Dong. Separation and recovery of arsenic from arsenic-bearing dust [J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2236–2242. DOI: 10.1016/j.jece.2015.06.028.

    Article  Google Scholar 

  24. GUO Xue-yi, YI Yu, SHI Jing, TIAN Qing-hua. Leaching behavior of metals from high-arsenic dust by NaOH–Na2S alkaline leaching [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 575–80. DOI: 10.1016/S1003-6326(16)64118-3.

    Article  Google Scholar 

  25. MONTENEGRO V, SANO H, FUJISAWA T. Recirculation of high arsenic content copper smelting dust to smelting and converting processes [J]. Minerals Engineering, 2013, 49: 184–89. DOI: 10.1016/j.mineng.2010.03.020.

    Article  Google Scholar 

  26. JIANG Xue-xian, HE Gui-xiang, LI Xu-guang, LU Jing. Experimental research on dearsenization of high arsenic fume [J]. Hydrometallurgy of China, 2010, 29(3): 199–202. (in Chinese)

    Google Scholar 

  27. LI Yu-hu, LIU Zhi-hong, LI Qi-hou, LIU Fu-peng, LIU Zhi-yong. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts [J]. Hydrometallurgy, 2016, 166: 41–47. DOI: 10.1016/j.hydromet.2016.07.010.

    Article  Google Scholar 

  28. VIRCIKOVA E, HAVLIK M. Removing as from converter dust by a hydrometallurgical method [J]. JOM, 1999, 51(9): 20–23. DOI: 10.1007/s11837-999-0152-1.

    Article  Google Scholar 

  29. LI Yu-hu, LIU Zhi-hong, LI Qi-hou, ZHAO Zhong-wei, LIU Zhi-yong, ZENG Li. Removal of arsenic from Waelz zinc oxide using a mixed NaOH–Na2S leach [J]. Hydrometallurgy, 2011, 108(3, 4): 165–70. DOI: 10.1016/j.hydromet.2011. 04.002.

    Article  Google Scholar 

  30. SULLIVAN C, TYRER M, CHEESEMAN C R, GRAHAM N J. Disposal of water treatment wastes containing arsenic— A review [J]. Science of the Total Environment, 2010, 408(8): 1770–78. DOI: 10.1016/j.scitotenv.2010.01.010.

    Article  Google Scholar 

  31. LI Yu-hu, LIU Zhi-hong, LI Qi-hou, ZHAO Zhong-wei, LIU Zhi-yong, ZENG Li, LI Li. Removal of arsenic from arsenate complex contained in secondary zinc oxide [J]. Hydrometallurgy, 2011, 109(3, 4): 237–44. DOI: doi.org/10.1016/j.hydromet.2011.07.007.

    Article  Google Scholar 

  32. ZHONG Da-peng, LI Lei, TAN Cheng. Separation of arsenic from the antimony-bearing dust through selective oxidation using CuO [J]. Metallurgical and Materials Transactions B, 2017, 48(2): 1308–1314. DOI: 10.1007/s11663-016-0896-2.

    Article  Google Scholar 

  33. ZHANG Rong-liang, QIU Ke-qiang, XIE Yong-jin, HONG Yu-min, ZHENG Chun-dao. Treatment process of dust from flash smelting furnace at copper smelter by oxidative leaching and dearsenifying process from leaching solution [J]. Journal of Central South University: Science and Technology, 2006, 37(1): 73–78. (in Chinese)

    Google Scholar 

  34. BERRE J F LE, GAUVIN R, DEMOPOULOS G P. Characterization of poorly-crystalline ferric arsenate precipitated from equimolar Fe(III)-As(V) solutions in the pH range 2 to 8 [J]. Metallurgical and Materials Transactions B, 2007, 38(5): 751–762. DOI: 10.1007/s11663-007-9081-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li  (李磊).

Additional information

Foundation item: Project(51564034) supported by the National Science Fund for Distinguished Regional Scholars, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Dp., Li, L. & Tan, C. Recovery of antimony from antimony-bearing dusts through reduction roasting process under CO—CO2 mixture gas atmosphere after firstly oxidation roasted. J. Cent. South Univ. 25, 1904–1913 (2018). https://doi.org/10.1007/s11771-018-3880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3880-y

Key words

关键词

Navigation