Skip to main content
Log in

Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ρ :

Density (kg m−3)

κ :

Turbulent kinetic energy (m2 s−2)

ϵ :

Turbulent kinetic energy dissipation rate (m2 s−3)

μ :

Dynamic viscosity (kg m−1 s−1)

μ t :

Turbulent viscosity (kg m−1 s−1)

β :

Coefficient of thermal expansion (K−1)

C p :

Specific heat capacity (J kg−1 K−1)

G k :

Generation of turbulent kinetic energy due to mean velocity gradient

G b :

Generation of turbulent kinetic energy due to buoyancy

g :

Acceleration due to gravity (ms−2)

h :

Convective heat transfer coefficient (Wm−2 K−1)

k :

Thermal conductivity (Wm−1 K−1)

p :

Pressure (Pa)

Prt :

Turbulent Prandtl number

T :

Temperature (K)

t :

Time instance (s)

U i ,U j :

Velocity component of the fluid (ms−1)

References

  1. X. Huang, B. G. Thomas, and F. M. Najjar: Metall. Trans. B, 1992, vol. 23B-3 :pp. 339-56.

    Article  Google Scholar 

  2. Björn Glaser, Mårten Görnerup, and Du Sichen: Steel Res Int., 2011, vol. 82, no. 7, pp. 827-35.

    Article  Google Scholar 

  3. Ghosh Ahindra (2001) Secondary steelmaking: principles and applications. CRC Press, New York, pp. 230–9.

    Google Scholar 

  4. J. L Xia and T. Ahokainen.: Metall. Trans. B, 2001, vol 32B-4, pp. 733-41.

    Article  Google Scholar 

  5. Y. Pan, C.E. Grip and B. Björkman: Scand. J. Met., 2003, vol. 32, no. 2, pp. 71-85.

    Article  Google Scholar 

  6. C.E. Grip, in Steelmaking Conference Proceedings, 1994, col. 77, pp. 103–15.

  7. C.E. Grip, L. Jonsson, P. Jönsson and K.O. Jonsson: ISIJ Int., 1999, vol. 39, no. 7, pp. 715-21.

    Article  Google Scholar 

  8. B. Olika, Y. Pan, B. Bjorkman, and C.E. Grip: Scand. J. Met., 1996, vol. 25, pp. 18-26.

    Google Scholar 

  9. S. Chakraborty and Y. Sahai: Metall. Trans. B, 1992, vol. 23B, pp. 153–67

    Article  Google Scholar 

  10. P.R. Austin, L.M. Camplin, J. Herbertson, and I.J. Taggart: ISIJ. Int., 1992, vol. 32, no. 2, pp. 196-202.

    Article  Google Scholar 

  11. O.J. Ilegbusi and J. Szekely: Trans. Iron Steel Inst. Jpn., 1987, vol.27, pp. 563-69.

    Article  Google Scholar 

  12. Grip C.E., Lampinen H. O., Lundqvist M., and Videhult S.: ISIJ Int., 1996, vol. 36, suppl pp. 211-14.

    Article  Google Scholar 

  13. Grip C. E., Jonsson K.O., Eriksson S., Jonsson L., Jönsson P., and Pan Y.: Scand. J. Met., 2000, vol. 29, no. 1, pp. 30-38.

    Article  Google Scholar 

  14. J. L Xia and T. Ahokainen.: Scand. J. Met.,2003, vol. 32, no. 4, pp. 211-17.

    Article  Google Scholar 

  15. Sichen, Du.: Steel Res Int., 2012, vol. 83, no. 9, pp. 825-41.

    Article  Google Scholar 

  16. Gupta, Natasha, and Sanjay Chandra.: ISIJ Int., 2004, vol. 44, pp.1517-26.

    Article  Google Scholar 

  17. A. Tripathi, J.K. Saha, J.B. Singh, and S.K. Ajmani: ISIJ Int., 2012, vol. 52, no. 9, pp. 1591-600.

    Article  Google Scholar 

  18. N. K. Nath, K. Mandal, A. K. Singh, B. Basu, C. Bhanu, S. Kumar, and A. Ghosh.: Ironmaking and Steelmaking,2006, vol. 33, no. 2,pp.140-50.

    Article  Google Scholar 

  19. Jormalainen, Toivo, and Seppo Louhenkilpi.: Steel Res Int., 2006, vol. 77, pp.472-84.

    Article  Google Scholar 

  20. K. Feng, D. He, A. Xu, and H. Wang.: Steel Res Int., 2016, vol. 87, no. 1, pp. 79-86.

    Article  Google Scholar 

  21. W. Lv, Z. Mao, P. Yuan, and M. Jia: Steel Res Int., 2014, vol. 85, no. 3, pp. 405-14.

    Article  Google Scholar 

  22. G. Taguchi and Y. Yokoyama: Taguchi’s Quality Engineering Handbook. ASI Consulting Group, Hoboken, 1993, vol. 4.

    Google Scholar 

  23. E. I. Kazantsev: Industrial Furnace: Design and Calculation Reference Book, Mir, Moscow, 1977.

    Google Scholar 

  24. S. Kumar: Hand book of Ceramics, Kumar & Associates, Kolkata, 1996.

    Google Scholar 

  25. Patankar, Suhas: Numerical heat transfer and fluid flow. CRC press, New York, 1980.

    Google Scholar 

  26. ANSYS Inc.: Fluent v16, User Manual, 2015.

  27. B.E. Launder and D.B. Spalding: Computer Methods Appl. Mech.Eng., 1974, vol. 3, pp. 269-89.

    Article  Google Scholar 

  28. R.Pardeshi, S. Basak, A. K. Singh, B. Basu, V. Mahashabde, S. K. Roy, and S. Kumar.: ISIJ Int.,2004, vol. 44, no. 9, pp. 1534-40.

    Article  Google Scholar 

  29. Shamsi, M. R. R. I., and S. K. Ajmani.: Steel Res Int., 2010, vol. 81, pp.132-41.

    Article  Google Scholar 

  30. Choudhary, S. K., and Suvankar Ganguly.: ISIJ Int., 2007, vol. 47, pp. 1759-66.

    Article  Google Scholar 

  31. Volkova, Olena, and Dieter Janke.: ISIJ Int., 2003, vol. 43, pp. 1185-90.

    Article  Google Scholar 

  32. Szekely, J., and R. G. Lee.: Trans Met Soc AIME, 1968, vol. 242, p. 961

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mr. Rohan Pandya, TRDDC for his help. Authors are thankful to Professor K A Padmanabhan for his guidance and suggestions. Authors also appreciate the continuous support from Dr. Pradip, TRDDC, TCS Research, and Mr. K Ananth Krishnan, CTO, TCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Deodhar.

Additional information

Manuscript submitted March 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deodhar, A., Singh, U., Shukla, R. et al. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle. Metall Mater Trans B 48, 1217–1229 (2017). https://doi.org/10.1007/s11663-016-0874-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0874-8

Keywords

Navigation