Skip to main content
Log in

Investigation on the Effect of Nozzle Number on the Recirculation Rate and Mixing Time in the RH Process Using VOF + DPM Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to explain the effect of the number of nozzles on recirculation flow rate in the RH process. Experimental data from water modeling were employed to validate the mathematical model. The experimental data included the velocity fields measured with a particle image velocimetry technique and mixing time. The multiphase model volume of fluid was employed to allow a more realistic representation of the free surface in the vacuum chamber while injected argon bubbles were treated as discrete phase particles and modeled using the discrete phase model. Interfacial forces between bubbles and liquid phase were considered, including the lift force. The simulations carried out with the mathematical model involved changes in the gas flow rate from 12 to 36 L/min and a number of nozzles from 4 to 8. The results indicated a logarithmic increment in the recirculation rate as the gas flow rate increased and also corresponded with an exponential decrease in mixing time. The plume area and liquid velocities resulting from individual nozzles were computed. A maximum optimum recirculation rate was defined based on a mechanism proposed to explain the effect of gas flow rate and the number of nozzles on the recirculation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. [1] Y. G. Park, K. W. Yi, S. B. Ahn: ISIJ Int., 41(2001), 403-409.

    Article  Google Scholar 

  2. [2] B. Li, F. Tsukihashi: ISIJ Int., 40(2000), 1203-1209.

    Article  Google Scholar 

  3. [3] Y. G. Park, W. C. Doo, K. W. Yi, S. B. An: ISIJ Int., 40(2000), 749-755.

    Article  Google Scholar 

  4. [4] L. Zhang, F. Li: JOM, 66(2014), 1227-1240.

    Article  Google Scholar 

  5. [5] K. Chattopadhyay, M. Isac, R. I. L. Guthrie: ISIJ Int., 50(2010), 331-348.

    Article  Google Scholar 

  6. [6] A. N. Conejo, S. Kitamura, N. Maruoka, S.-J. Kim: Metall. Mater. Trans. B, 44(2013), 914-923.

    Article  Google Scholar 

  7. [7] P. A. Kishan, S. K. Dash: ISIJ Int., 49(2009), 495-504.

    Article  Google Scholar 

  8. [8] D. Geng, H. Lei, J. He: Metall. Mater. Trans. B, 41(2010), 234-247.

    Article  Google Scholar 

  9. [9] C. Kamata, S. Hayashi, K. Ito: Tetsu-to-Hagané, 84(1998), 484-489.

    Google Scholar 

  10. [10] L. Neves, H. O. de Oliveira, R. P. Tavares: ISIJ Int., 49(2009), 1141-1149.

    Article  Google Scholar 

  11. [11] S. K. Ajmani, S. K. Dash, S. Chandra, C. Bhanu: ISIJ Int., 44(2004), 82-90.

    Article  Google Scholar 

  12. [12] R. Tsujino, J. Nakashima, M. Hirai, I. Sawada: ISIJ Int., 29(1989), 589-595.

    Article  Google Scholar 

  13. [13] J. Han, X. Wang, D. Ba: Vacuum, 109(2014), 68-73.

    Article  Google Scholar 

  14. A.A. Nascimento, H.L.V. Pujatti, L. Neves, T.R.C. de Almeida, and R.P. Tavares: AISTech Proceedings, Indianapolis IN, 2007.

  15. [15] S. Li, X. Ai, N. Wang, N. Lv: Adv. Mater. Res., 287-290(2011), 840-843.

    Google Scholar 

  16. [16] L. Lin, Y. Bao, F. Yue, L. Zhang, H. Ou: Int. J. Min. Met. Matls, 19(2012), 483-489.

    Article  Google Scholar 

  17. [17] S. Inoue, Y. Furuno, T. Usui, S. Miyahara: ISIJ Int., 32(1992), 120-125.

    Article  Google Scholar 

  18. [18] R. K. Hanna, T. Jones, R. I. Blake, M. S. Millman: Ironmaking Steelmaking, 21(1994), 37-43.

    Google Scholar 

  19. [19] F. Jiang, G. G. Cheng: Ironmaking Steelmaking, 39(2012), 386-390.

    Article  Google Scholar 

  20. [20] B. Zhu, Q. Liu, D. Zhao, S. Ren, M. Xu, B. Yang, B. Hu: Steel Res. Int., 87(2016), 136-145.

    Article  Google Scholar 

  21. [21] O. Davila, L. Garcia-Demedices, R. D. Morales: Metall. Mater. Trans. B, 37(2006), 71-87.

    Article  Google Scholar 

  22. [22] J. W. Han, S. H. Heo, D. H. Kam, B. D. You, J. J. Pak, H. S. Song: ISIJ Int., 41(2001), 1165-1173.

    Article  Google Scholar 

  23. [23] B. Li, H. Yin, C.Q. Zhou, F. Tsukihashi: ISIJ Int., 48(2008), 1704-1711.

    Article  Google Scholar 

  24. [24] L. Zhang: Modelling Simul. Mater. Sci. Eng., 8(2000), 463.

    Article  Google Scholar 

  25. [25] H. Liu, Z. Qi, M. Xu: Steel Res. Int., 82(2011), 440-458.

    Article  Google Scholar 

  26. [26] C. W. Hirt, B. D. Nichols: J. Comput. Phys., 39(1981), 201-225.

    Article  Google Scholar 

  27. [27] J. T. Kuo, G. B. Wallis: Int. J. Multiphase Flow, 14(1988), 547-564.

    Article  Google Scholar 

  28. [28] S. T. Johansen, F. Boysan: Metall. Trans. B, 19(1988), 755-764.

    Article  Google Scholar 

  29. [29] Y. Y. Sheng, G. A. Irons: Metall. Mater. Trans. B, 26(1995), 625-635.

    Article  Google Scholar 

  30. [30] D. Guo, G. A. Irons: Metall. Mater. Trans. B, 31(2000), 1457-1464.

    Article  Google Scholar 

  31. [31] K. Beskow, L. Jonsson, D. Sichen, N. N. Viswanathan: Metall. Mater. Trans. B, 32(2001), 319-328.

    Article  Google Scholar 

  32. J. Aoki, L. Zhang, and B. G. Thomas: ICS 2005-The 3rd International Congress on the Science & Technology of Steelmaking (Charlotte, NC, May 9–12), AIST. Warrandale. 2005.

  33. [33] M. Madan, D. Satish, D. Mazumdar: ISIJ Int., 45(2005), 677-685.

    Article  Google Scholar 

  34. [34] V. D. Felice, I. L. A. Daoud, B. Dussoubs, A. Jardy, J. P. Bellot: ISIJ Int., 52(2012), 1273-1280.

    Article  Google Scholar 

  35. [35] J. P. Bellot, V. D. Felice, B. Dussoubs, A. Jardy, S. Hans: Metall. Mater. Trans. B, 45(2013), 13-21.

    Google Scholar 

  36. ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc. 2011.

  37. B. E. Launder, D. B. Spalding. Lectures in mathematical models of turbulence. England: London: Academic Press. 1972

    Google Scholar 

  38. [38] S. A. Morsi, A. J. Alexander: J. Fluid Mech., 55(1972), 193-208.

    Article  Google Scholar 

  39. [39] J. F. Davidson, Schüler: Trans. Inst. Chem. Eng., 38(1960), 335-342.

    Google Scholar 

  40. [40] L. Zhang, S. Taniguchi: Int. Mater. Rev., 45(2000), 59-82.

    Article  Google Scholar 

  41. [41] C. G. Méndez, N. Nigro, A. Cardona: J. Mater. Process. Tech., 160(2005), 296-305.

    Article  Google Scholar 

  42. D.A. Drew, D.D. Joseph, and S.L. Passman: Particulate Flows: Processing and Rheology, Springer, 1998.

  43. [43] M. Pourtousi, J. N. Sahu, P. Ganesan: Chem. Eng. Process., 75(2014), 38-47.

    Article  Google Scholar 

  44. [44] Y. Xie, F. Oeters: Steel Res. Int., 63(1992), 93-104.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51274034 and 51404019), State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted December 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, H., Li, F., Zhang, L. et al. Investigation on the Effect of Nozzle Number on the Recirculation Rate and Mixing Time in the RH Process Using VOF + DPM Model. Metall Mater Trans B 47, 1950–1961 (2016). https://doi.org/10.1007/s11663-016-0669-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0669-y

Keywords

Navigation