Skip to main content
Log in

Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Takamura and S. Mizoguchi: Proc. 6th Int. Iron and Steel Cong, ISIJ, Nagoya, 1990, vol. 1, pp. 591–97.

  2. O. Wijk: Proc. 7th Int. Conf. Refining Process (SCANINJECT VII), Luleå, Sweden, 1995, pp. 35–67.

  3. Ø. Grong, L. Kolbeinsen, C. van der Eijk and G. Tranell: ISIJ Int., 2006, vol. 46, pp. 824-31.

    Article  Google Scholar 

  4. M. Kiviö and L. Holappa: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 233-40.

    Article  Google Scholar 

  5. W. Mu, P. G. Jönsson and K. Nakajima: ISIJ Int., 2014, vol. 54, pp. 2907-16.

    Article  Google Scholar 

  6. W. Mu, P. G. Jönsson, H. Shibata and K. Nakajima: Steel Res. Int., 2015, DOI: 10.1002/srin.201500061.

    Google Scholar 

  7. H. Terasaki, T. Yamada and Y. Komizo: Mater. Sci. Forum, 2008, vol. 580-582, pp. 33-6.

    Article  Google Scholar 

  8. W. Bin and S. Bo: Steel Res. Int., 2012, vol. 83, pp. 487-95.

    Article  Google Scholar 

  9. B. Wen and B. Song: Ninth International Conference on Molten Slags, Fluxes and Salts (Molten 12), Beijing, 2012, p. 160.

  10. X. Wan, K. Wu, G. Huang and R. Wei: Steel Res. Int., 2014, vol. 85, pp. 243-50.

    Article  Google Scholar 

  11. D. Zhang, H. Terasaki, and Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-78.

    Article  Google Scholar 

  12. D. Zhang, Y. Shintaku, S. Suzuki and Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 447-58.

    Article  Google Scholar 

  13. N. Kikuchi, S. Nabeshima, Y. Kishimoto, Y. Ishiguro and S. Sridhar: ISIJ Int., 2009, vol. 49, pp. 1036-45.

    Article  Google Scholar 

  14. T. Yamada, H. Terasaki and Y. Komizo: Weld. Int., 2009, vol. 23, pp. 376-81.

    Article  Google Scholar 

  15. A.O. Kluken, Ø. Grong and J. Hjelen: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 657-63.

    Article  Google Scholar 

  16. C. van der Eijk, Ø. Grong, and J. Hjelen: in Proc. Int. Conf. on Solid-solid Phase Trans.’99 (JIMIC-3), M. Koiwa, K. Otsuka, and T. Miyazaki, eds., JIM, Sendai, 1999, pp. 1573–76.

  17. X. L. Wan, H. H. Wang, L. Cheng and K. M. Wu: Mater. Character., 2012, vol. 67, pp. 41-51.

    Article  Google Scholar 

  18. L. Cheng and K. M. Wu: Acta Mater., 2009, vol. 57, pp. 3754-62.

    Article  Google Scholar 

  19. D. Phelan, R. Dippenaar: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3701-6.

    Article  Google Scholar 

  20. A. Phelan, N. Stanford and R. Dippenaar: Mater. Sci. Eng. A, 2005, vol. 407, pp. 127-34.

    Article  Google Scholar 

  21. H. Chikama, H. Shibata, T. Emi and M. Suzuki: Mater. Trans. JIM, 1996, vol. 37, pp. 620-26.

    Article  Google Scholar 

  22. H. Shibata, H.B. Yin, S. Yoshinaga, T. Emi and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149-56.

    Article  Google Scholar 

  23. K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 629-41.

    Article  Google Scholar 

  24. Q. Liu, H. Shibata, P. Hedström, P. Jönsson and K, Nakajima: ISIJ Int., 2013, vol. 53, pp. 1237-44.

    Article  Google Scholar 

  25. J. Janis, R. Inoue, A. Karasev, K. Nakajima and P. G. Jönsson : Steel Research Int., 2009, vol. 80, pp. 450-456.

    Google Scholar 

  26. K.F. Kelton, A.L. Greer: Nucleation in Condensed Matter - Application in Materials and Biology, Elsevier, Oxford, UK, 2010, pp. 165-226.

    Book  Google Scholar 

  27. J-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  28. TCS Steels/Fe-Alloys Database Version 7.0, Thermo-Calc Software AB, Sweden, 2012.

  29. T. Furuhara: Tetsu-to-Hagané, 2003, vol. 89, pp. 497-509.

    Google Scholar 

  30. Z.-G. Yang, M. Enomoto: Mater. Sci. Eng. A, 2002, vol. 332, pp. 184-92.

    Article  Google Scholar 

  31. Z.-G. Yang, M. Enomoto: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 267-74.

    Article  Google Scholar 

  32. M. Enomoto: Metal. Mater., 1998, vol. 4, pp. 115-23.

    Article  Google Scholar 

  33. Z.-G. Yang, C. Zhang, T. Pan: Mater. Sci. Forum, 2005, vol. 475-479, pp. 113-6.

    Article  Google Scholar 

  34. J.H. van der Merwe: J. Appl. Phys., 1963, vol. 34, pp. 117-22.

    Article  Google Scholar 

  35. N. Pan, B. Song, Q. Zhai, B. Wen: J. Chinese Rare Earth Soc., 2010, vol. 28, pp. 126-30.

    Google Scholar 

  36. A.R. Mills, G. Thewlis, J. A. Whiteman: Mater. Sci. Technol., 1987, vol. 3, pp. 1051-61.

    Article  Google Scholar 

  37. F.S. Galasso: Structure and properties of inorganic solids, 1st ed., Pergamon Press Ltd., Headington Hill Hall, Oxford, 1970, pp. 28–31.

    Google Scholar 

  38. S. Zhang, N. Hattori, M. Enomoto, T. Tarui: ISIJ Int., 1996, vol. 36, pp. 1301-9.

    Article  Google Scholar 

  39. Y. O. Ciftci, Y. Ünlü, K. Colakoglu, E. Deligoz: Phys. Scr. 2009, vol. 80, pp. 1-6

    Article  Google Scholar 

  40. M. Fukuhara, A. Sanpei: ISIJ Int., 1993, vol. 33, pp. 508-12.

    Article  Google Scholar 

  41. A.J. Perry: Thin Solid Films, 1990, vol. 193-194, pp. 463-71.

    Article  Google Scholar 

  42. J.M. Howe: Interfaces in Materials, Wiley, New York, 1997, p. 378.

  43. D.A. Porter and K.E. Easterling: Phase Formation in Metals and Alloys, 2nd ed., Chapman & Hall, Boundary Row, London, 1992, pp. 263–75.

  44. D. Kim, K. Han, B. Lee, I. Han, J. H. Park and C. Lee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2046-54.

    Article  Google Scholar 

  45. H. Homma, S. Ohkita, S. Matsuda, and K. Yamamoto: Weld. J., 1987, vol. 66, pp. 301-02

    Google Scholar 

  46. J.-L. Lee and Y.-T. Pan: Mater. Sci. Technol., 1992, vol. 8, pp. 236-44.

    Article  Google Scholar 

  47. J.-L. Lee and Y.-T. Pan: Metall. Trans. A, 1993, vol. 24A, pp. 1399-408.

    Article  Google Scholar 

  48. J.-L. Lee: Acta Metall. Mater., 1994, vol. 42, pp. 3291-8.

    Article  Google Scholar 

  49. J.M. Gregg, H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 43, pp. 739-48.

    Article  Google Scholar 

  50. J.M. Gregg, H.K.D.H. Bhadeshia: Metal. Mater. Trans. A, 1994, vol. 25A, pp. 1603-11.

    Article  Google Scholar 

  51. A. Takada, Y. Komizo, H. Terasaki, T. Yokota, K. Oi, K. Yasuda: Weld. Int., 2015, vol. 29, pp. 254-61.

    Article  Google Scholar 

  52. Ø. Grong, A.O. Kluken, H.K. Nylund, A.L. Dons, J. Hjelen: Metal. Mater. Trans. A, 1995, vol. 26A, pp. 525-34.

    Article  Google Scholar 

  53. R. Ricks, P. R. Howell and G. S. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732-40.

    Article  Google Scholar 

  54. J.-S. Byun, J.-H. Shim, Y. W. Cho and D. N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-606.

    Article  Google Scholar 

  55. S. Liu and D.L. Olson: Weld. J., 1986, vol. 65, 139-49

    Google Scholar 

  56. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto: ISIJ Int. 1994, vol. 34, pp. 829-35.

    Article  Google Scholar 

  57. P. Harrison and R. Farrar: Metal Constr., 1987, vol. 19, pp. 392-9.

    Google Scholar 

  58. N. Mori, H. Homma, S. Okita, M. Wakabayashi: Mechanism of notch toughness improvement in Ti-B bearing welds metals, IIW Doc. IX-1196-81, International Institute of Welding, 1981, pp. 1–16.

  59. A.S. Podder, A.S. Pandit, A. Murugaiyan, D. Bhattacharjee, R.K. Ray: Ironmaking Steelmaking, 2007, vol. 34, pp. 83–8.

    Article  Google Scholar 

  60. W. Mu, H. Shibata, P. Hedström, P. G. Jönsson and K. Nakajima: Steel Research Int., 2016, vol. 87, pp. 10-6.

    Article  Google Scholar 

  61. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.

    Article  Google Scholar 

  62. H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-88.

    Article  Google Scholar 

  63. Z. Hou, P. Hedström, Y. Xu, D. Wu and J. Odqvist: ISIJ Int., 2014, vol. 54, pp. 2649-56.

    Article  Google Scholar 

  64. T. Maki, K. Tsuzaki and I. Tamura: Trans. Iron Steel Inst. Jpn., 1980, vol. 20, pp. 207-14.

    Google Scholar 

  65. S. Morito, H. Saito, T. Ogawa, T. Furuhara and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91-4.

    Article  Google Scholar 

  66. H. Terasaki and Y. Komizo: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2683-9.

    Article  Google Scholar 

  67. T. Song and B. C. de Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1686-705.

    Article  Google Scholar 

  68. P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedström, S. S. Babu, H. Terasaki, and Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4984-8.

    Article  Google Scholar 

  69. N.A. Gjostein, H.A. Domian, H.I. Aaronson, E. Eichen: Acta Mater., 1966, vol. 14: pp. 1637-44.

    Article  Google Scholar 

  70. L.H. Van Vlack: Trans AIME, 1951, vol. 191, pp. 251–59.

Download references

Acknowledgments

The authors would like to thank Assistant Professor Sohei Sukenaga and Mr. Terui (IMRAM, Tohoku University) for their assistance of the experiment. Professor Shigeru Suzuki and Dr. Yusuke Onuki (IMRAM, Tohoku University) are also acknowledged for the discussion on the EBSD analyses. W.M is grateful to the China Scholarship Council (CSC) for the financial support enabling his studies at KTH Royal Institute of Technology. He is also grateful to the JASSO Scholarship foundation for the financial support for his research at Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangzhong Mu.

Additional information

Manuscript submitted October 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Shibata, H., Hedström, P. et al. Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition. Metall Mater Trans B 47, 2133–2147 (2016). https://doi.org/10.1007/s11663-016-0630-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0630-0

Keywords

Navigation