Skip to main content
Log in

Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The characteristics of inclusions in Fe-16Mn-xAl-0.6C (x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm−2, and 2.51 × 10−6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm−2 and 2.82 × 10−6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm−2, and 2.55 × 10−5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. G. Frommeyer, U. Brüx and P. Neumann: ISIJ Int., 43 (2003), 438.

    Article  Google Scholar 

  2. A. S. Hamada and L. P. Karjalainen: Mater. Sci. Eng. A, 528 (2011), 1819.

    Article  Google Scholar 

  3. O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: Int. J. Plast., 16 (2000), 1391.

    Article  Google Scholar 

  4. S. Allain, J. P. Chateau and O. Bouaziz: Mater. Sci. Eng. A, 387–389 (2004), 143.

    Article  Google Scholar 

  5. L. Chen, H. S. Kim, S. K. Kim and B. C. De Cooman: ISIJ Int., 47 (2007), 1804.

    Article  Google Scholar 

  6. W. T. Nachtrab and Y. T. Chou: Metall. Trans. A, 19 (1988), 1305.

    Article  Google Scholar 

  7. S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi and H. Horiguch: ISIJ Int., 30 (1990), 310.

    Article  Google Scholar 

  8. B. Mintz, R. Abushosha and M. Shaker: Mater. Sci. Technol., 9 (1993), 907.

    Article  Google Scholar 

  9. B. Mintz: ISIJ Int., 39 (1999), 833.

    Article  Google Scholar 

  10. J. Calvo, J. M. Cabrera, A. Rezaeian and S. Yue: ISIJ Int., 47 (2007), 1518.

    Article  Google Scholar 

  11. L. H. Chowna and L. A. Cornish: Mater. Sci. Eng. A, 494 (2008), 263.

    Article  Google Scholar 

  12. K. R. Carpenter, R. Dippenaar and C. R. Killmore: Mater. Metall. Trans. A, 40 (2009), 573.

    Article  Google Scholar 

  13. X. M. Chen, S. H. Song, Z. C. Sun, S. J. Liu, L. Q. Weng and Z. X. Yuan: Mater. Sci. Eng. A, 527 (2010), 2725.

    Article  Google Scholar 

  14. J. I. Kömi and L. P. Karjalainen: Effect of restoration kinetics on hot ductility of a ferritic-austenitic and super austenitic stainless steels, in: Proceedings of International Conference on Stainless Steels, Dusseldorf, Germany, 1996, p. 301.

  15. J. Liu, G. W. Fan, P. De Han, J. S. Liu, J. Q. Gao and J. F. Yang: Mater. Sci. Forum, 620-622 (2009), 161.

    Article  Google Scholar 

  16. F. Shi, L. J. Wang, W. F. Cui, Z. B. Li, M. Z. Xu and C. M. Liu: Mater. Sci. Forum, 575-578 (2008), 1056.

    Article  Google Scholar 

  17. S. W. Hwang, J. H. Ji and K. T. Park: Mater. Sci. Eng. A, 528 (2011), 7267.

    Article  Google Scholar 

  18. S. E. Kang, J. R. Banerjee, E. M. Maina and B. Mintz: Mater. Sci. Technol., 29 (2013), 1225.

    Article  Google Scholar 

  19. S. E. Kang, J. R. Banerjee, A. S. Tuling and B. Mintz: Mater. Sci. Technol., 30 (2014), 486.

    Article  Google Scholar 

  20. S. E. Kang, J. R. Banerjee, A. Tuling and B. Mintz: Mater. Sci. Technol., 30 (2014), 1328.

    Article  Google Scholar 

  21. I. Mejía, A. E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo and J. M. Cabrera: Mater. Sci. Eng. A, 616 (2014), 229.

    Article  Google Scholar 

  22. A. E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo and J. M. Cabrera: Mater. Sci. Eng. A, 611 (2014), 77.

    Article  Google Scholar 

  23. A. Dumay, J. P. Chateau, S. Allain, S. Miget and O. Bouaziz: Mater. Sci. Eng. A, 483-484 (2008), 184.

    Article  Google Scholar 

  24. K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi and C. S. Lee: Mater. Sci. Eng. A, 527 (2010), 3651.

    Article  Google Scholar 

  25. A. S. Hamada, L. P. Karjalainen and M. C. Somani: Mater. Sci. Eng. A, 467 (2007), 114.

    Article  Google Scholar 

  26. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi and M. Murakami: Mater. Sci. Eng. A, 497 (2008), 353.

    Article  Google Scholar 

  27. Y. Kim, N. Kim, Y. Park, I. Choi, G. Kim, S. Kim and K. Cho: J. Kor. Inst. Metall. Mater., 46 (2008), 780.

    Google Scholar 

  28. J. M. Jang, S. J. Kim, N. H. Kang, K. M. Cho and D. W. Suh: Metall. Mater. Int., 15 (2009), 909.

    Article  Google Scholar 

  29. K. Ahn, D. Yoo, M. H. Seo, S. H. Park and K. Chung: Metall. Mater. Int., 15 (2009), 637.

    Article  Google Scholar 

  30. K. G. Jin, C. Y. Kang, S. Y. Shin, S. Hong, S. Lee, H. S. Kim, K. H. Kim and N. J. Kim: Mater. Sci. Eng. A, 528 (2011), 2922.

    Article  Google Scholar 

  31. J. Kim, S. J. Lee and B. C. De Cooman: Scripta Mater., 65 (2011), 363.

    Article  Google Scholar 

  32. B. Mintz, S. Yue and J. J. Jonas: Int. Mater. Rev., 36 (1991), 187.

    Article  Google Scholar 

  33. H. Su, W. D. Gunawadarna, A. Tuling and B. Mintz: Mater. Sci. Technol., 23 (2007), 1357.

    Article  Google Scholar 

  34. B. Mintz, A. Tuling and A. Delgado: Mater. Sci. Technol., 19 (2003), 1721.

    Article  Google Scholar 

  35. S. E. Kang, A. Tuling, J. R. Banerjee, W. D. Gunawardana and B. Mintz: Mater. Sci. Technol., 27 (2011), 95.

    Article  Google Scholar 

  36. S. E. Kang, J. R. Banerjee and B. Mintz: Mater. Sci. Technol., 28 (2012), 589.

    Article  Google Scholar 

  37. B. Mintz and D. N. Crowther: Int. Mater. Rev., 55 (2010), 168.

    Article  Google Scholar 

  38. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A. D. Pelton and S. Peterson: Calphad, 26 (2002), 189.

    Article  Google Scholar 

  39. C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A. D. Pelton, C. Robelin and S. Peterson: Calphad, 33 (2009), 295.

    Article  Google Scholar 

  40. R. T. DeHoff and F. N. Rhines: Quantitative Microscopy, McGraw-Hill, New York, (1968), 158.

    Google Scholar 

  41. R. Abushosha, R. Vipond and B. Mintz: Mater. Sci. Technol., 7 (1991), 1101.

    Article  Google Scholar 

  42. B. Mintz and R. Abushosha: Mater. Sci. Technol., 8 (1992), 171.

    Article  Google Scholar 

  43. N. Hansen and B. Bay: Acta Metall., 29 (1981), 65.

    Article  Google Scholar 

  44. R. D. Doherty and J. W. Martin: Trans. Am. Soc. Met., 57 (1964), 874.

    Google Scholar 

  45. G. A. Osinkolu, M. Tacikowski and A. Kobylanski: Mater. Sci. Technol., 1 (1985), 520.

    Article  Google Scholar 

  46. J. Yang, Y. N. Wang, X. M. Ruan, R. Z. Wang, K. Zhu, Z. J. Fan, Y. C. Wang, C. B. Li and X. F. Jiang: Mater. Metall. Trans. B, 46 (2015), 1365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Nan Wang.

Additional information

Manuscript submitted September 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Yang, J., Wang, RZ. et al. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents. Metall Mater Trans B 47, 1697–1712 (2016). https://doi.org/10.1007/s11663-016-0626-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0626-9

Keywords

Navigation