Skip to main content
Log in

The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s−1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s−1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s−1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C 0 :

Carbon content in steel (mass pct)

λ 2 :

Secondary arm spacing (μm)

t f :

Local solidification time (s)

A :

Parameters

d :

Parameters

T liq :

Liquidus temperature (K)

T sol :

Solidus temperatures (K)

C R :

Cooling rate (K s−1)

N V :

Number of inclusions per unit volume in specimen (m−3)

N a :

Number of inclusions per unit area in specimen (m−2)

d i :

Apparent particle size of mean of ith inclusion among n inclusions (m)

\( \overline{d} \) :

Harmonic mean of inclusion particle size (m)

f V :

Volume ratio of inclusions (pct)

J N :

Diffusion flux of nitrogen (mol m−2 s−1)

D liqN :

Mass transfer coefficient of nitrogen in molten steel (m2 s−1)

r :

Radius of AlN (m)

[N]L :

Concentration of nitrogen in the molten steel (mol m−3)

[N]equilibrium :

Nitrogen concentration in equilibrium with AlN (mol m−3)

ρ Fe :

Iron density (7.07 × 103 kg m−3)

M N :

Molar mass of nitrogen (0.014 kg mol−1)

[pctN](t):

Concentration of nitrogen after time t during solidification from liquidus to solidus temperature (mass pct)

[pctN]equilibrium :

Nitrogen concentration in equilibrium with AlN (mass pct)

[pcti](t):

Concentration of solute i after time t during solidification from liquidus to solidus temperature

[pcti]0 :

Initial concentration of solute i

f s (t):

Solid fraction after time t during solidification

k i :

Partition coefficient of solute between liquid and solid phase

D sol i :

Diffusion coefficient of solute i in solid (m2 s−1)

T 0 :

Melting point of pure iron [1809 K (1536 °C)]

MAlN :

Molar mass of AlN (0.041 kg mol−1)

ρ AlN :

AlN density (3.26 × 103 kg m−3)

r(t):

Radius of AlN after time t (t > t AlN) during solidification from liquidus to solidus temperature (m)

t AlN :

Time from the beginning of solidification to the formation of AlN (s)

R :

Radius of unit molten steel sphere (m)

[pctN]0 :

Initial concentration of nitrogen in molten steel (mass pct)

[pctN]0(t):

Average nitrogen content in solid and liquid phase of steel after time t (t > t AlN), during solidification from liquidus to solidus temperature (mass pct)

[pctN]AlN :

Content of nitrogen in AlN (mass pct)

References

  1. P. Von Schweinichen, Z. Chen, D. Senk, and A. Lob: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5416–23.

    Article  Google Scholar 

  2. O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  3. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P. J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.

    Article  Google Scholar 

  4. C. Zhuang, J. Liu, Z. Mi, H. Jiang, D. Tang, and G. Wang: Steel Res. Int., 2014, vol. 85, pp. 1432–39.

    Article  Google Scholar 

  5. A. S. Hamada, L. P. Karjalainen, and M. C. Somani: Mater. Sci. Eng., A, 2007, vol. 467, pp. 114–24.

    Article  Google Scholar 

  6. S. W. Hwang, J. H. Ji, and K. T. Park: Mater. Sci. Eng., A, 2011, vol. 528, pp. 7267–75.

    Article  Google Scholar 

  7. Dumay A, Chateau JP, Allain S, Miget S, Bouaziz O (2008) Mater. Sci. Eng. A, vol. 483–484:184–87

    Article  Google Scholar 

  8. K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi, and C. S. Lee: Mater. Sci. Eng., A, 2010, vol. 527, pp. 3651–61.

    Article  Google Scholar 

  9. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami: Mater. Sci. Eng. A, 2008, vol. 497, pp. 353–57.

    Article  Google Scholar 

  10. Y. Kim, N. Kim, Y. Park, I. Choi, G. Kim, S. Kim, and K. Cho: J. Kor. Inst. Metall. Mater., 2008, vol. 46, pp. 780–87.

    Google Scholar 

  11. J. M. Jang, S. J. Kim, N. H. Kang, K. M. Cho, and D. W. Suh: Metall. Mater. Int., 2009, vol. 15, pp. 909–16.

    Article  Google Scholar 

  12. K. Ahn, D. Yoo, M. H. Seo, S. H. Park, and K. Chung: Metall. Mater. Int., 2009, vol. 15, pp. 637–47.

    Article  Google Scholar 

  13. K. G. Chin, C. Y. Kang, S. Y. Shin, S. Hong, S. Lee, H. S. Kim, K. H. Kim, and N. J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2922–28.

    Article  Google Scholar 

  14. J. Kim, S. J. Lee, and B. C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 363–66.

    Article  Google Scholar 

  15. D. J. Kim, and J. H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 875–86.

    Article  Google Scholar 

  16. A. Grajcar, U. Galisz, and L. Bulkowski: Arch. Mater. Sci. Eng., 2011, vol. 50, pp. 21–30.

    Google Scholar 

  17. G. Gigacher, W. Krieger, P. R. Scheller, and C. Thomser: Steel Res. Int., 2005, vol. 76, pp. 644–49.

    Google Scholar 

  18. A. Grajcar, M. Kamińska, U. Galisz, L. Bulkowski, M. Opiela, and P. Skrzypczyk: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 245–55.

    Google Scholar 

  19. J. H. Park, D. J. Kim, and D. J. Min: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2316–24.

    Article  Google Scholar 

  20. J. H. Park, and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  Google Scholar 

  21. M. Jiang, X. H. Wang, B. Chen, and W. J. Wang: ISIJ Int., 2010, vol. 50, pp. 95–104.

    Article  Google Scholar 

  22. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A. D. Pelton, and S. Peterson: Calphad, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  23. C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A. D. Pelton, C. Robelin, and S. Peterson: Calphad, 2009, vol. 33, pp. 295–311.

    Article  Google Scholar 

  24. K. W. Seah, J. Hemanth, and S. C. Sharma: J. Mater. Sci., 1998, vol. 33, pp. 23–28.

    Article  Google Scholar 

  25. M. El-Bealy, and B. G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 689–93.

    Article  Google Scholar 

  26. H. Jacobi, and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 76A, pp. 811–20.

    Article  Google Scholar 

  27. H. F. Fischmeister, R. Riedl, and S. Karagöz: Metall. Trans. A, 1989, vol. 20, pp. 2133–48.

    Article  Google Scholar 

  28. M. Wolf, T. W. Clyne, and W. Kurz: Arch. Eisenhuttenwes., 1982, vol. 53, pp. 91–96.

    Google Scholar 

  29. M. Sugiyama, T. Umeda, and J. Matsuyama: Tetsu-to-Hagané, 1974, vol. 60, pp. 1094–1113.

    Google Scholar 

  30. R. T. DeHoff: Quantitative Microscopy, McGraw-Hill, New York, 1968, p. 128.

    Google Scholar 

  31. P. Atkins, and J. De Paula: Atkins’ physical chemistry, Oxford University Press, Oxford, 2002, p. 953.

    Google Scholar 

  32. I. Ohnaka: Trans. ISIJ, 1986, vol. 26, pp. 1045–51.

    Article  Google Scholar 

  33. Y. N. Wang, J. Yang, and Y. P. Bao: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2269–78.

    Article  Google Scholar 

  34. J. X. Chen: Common Charts and Databook for steelmaking, The Metallurgical Industry Press, Beijing, 2010, p. 853.

    Google Scholar 

  35. P. Maugis, and M. Gouné: Acta Mater., 2005, vol. 53, pp. 3359–67.

    Article  Google Scholar 

  36. J. Matsuno: Proc. Symp. Solidification Phenomena, Solidification Comm., ISIJ, Tokyo, 1976, p. 2.

  37. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414–19.

    Article  Google Scholar 

  38. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Nan Wang.

Additional information

Manuscript submitted July 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Yang, J., Xin, XL. et al. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels. Metall Mater Trans B 47, 1378–1389 (2016). https://doi.org/10.1007/s11663-015-0568-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0568-7

Keywords

Navigation