Skip to main content
Log in

Temperature Dependence of Behavior of Interface Between Molten Sn and LiCl–KCl Eutectic Melt Due to Rising Gas Bubble

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The behavior of the interface between molten Sn and the LiCl–KCl eutectic melt system was observed directly. We found that the transient behavior of the interface exhibits considerable temperature dependence through a change in its physical properties. The “metal film” generated in the upper molten salt phase significantly influences the shape of the interface. Although the lifetime of the metal film depends on the gas flow rate, it is not affected by the buoyancy if the interfacial tension is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Mazumdar, and R. I. L Guthrie: ISIJ Int., 1995, vol. 35, pp. 1–20.

    Article  Google Scholar 

  2. G. Kaptay: Metall. Mater. Trans. B, 2001, vol. 32, pp. 555–557.

    Article  Google Scholar 

  3. Subagyo and G.A. Brooks: ISIJ Int., 2002, vol. 42, pp. 1182–1184.

  4. N. Dogan, G. A. Brooks, and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093–1101.

    Article  Google Scholar 

  5. B. S. Terry, and P. Grieveson: ISIJ Int., 1993, vol. 33, pp. 166–175.

    Article  Google Scholar 

  6. R. Minto, and W. G. Davenport: Can. Mining Metall. Bull., 1972, vol. 65, pp. 70–76.

    Google Scholar 

  7. G. Reiter, and K. Schwerdtfeger: ISIJ Int., 1992, vol. 32, pp. 50–56.

    Article  Google Scholar 

  8. G. Reiter, and K. Schwerdtfeger: ISIJ Int., 1992, vol. 32, pp. 57–65.

    Article  Google Scholar 

  9. Z. Lin, and R. I. L. Guthrie: Metall. Mater. Trans. B, 1994, vol. 25, pp. 855–864.

    Article  Google Scholar 

  10. K. Sakaguchi, and K. Ito: ISIJ Int., 1995, vol. 35, pp. 1348–1353.

    Article  Google Scholar 

  11. A. Kumar, M. Malathi, K. M. Godiwalla, E. Z. Chacko, S. K. Ajmani, and S. Ranganathan: ISIJ Int., 2014, vol. 54, pp. 2239–2247.

    Article  Google Scholar 

  12. V. F. Chevrier, and A. W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 537–540.

    Article  Google Scholar 

  13. M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, and Z. I. Morita: ISIJ Int., 1995, vol. 35, pp. 1354–1361.

    Article  Google Scholar 

  14. P. K. Iwamasa, and R. J. Fruehan: ISIJ Int., 1996, vol. 36, pp. 1319–1327.

    Article  Google Scholar 

  15. Z. Han, and L. Holappa: Metall. Mater. Trans. B, 2003, vol. 34, pp. 525–532.

    Article  Google Scholar 

  16. Z. Han, and L. Holappa: ISIJ Int., 2003, vol. 43, pp. 292–297.

    Article  Google Scholar 

  17. L. Holappa, L. Forsbacka, and Z. Han: ISIJ Int., 2006, vol. 46, pp. 394–399.

    Article  Google Scholar 

  18. D. Poggi, R. Minto, and G. Davenport: J. Met., 1969, vol. 21, pp. 40–45.

    Google Scholar 

  19. D. Y. Song, N. Maruoka, T. Maeyama, H. Shibata, and S. Y. Kitamura: ISIJ Int., 2010, vol. 50, pp. 1539–1545.

    Article  Google Scholar 

  20. D. Y. Song, N. Maruoka, G. S. Gupta, H. Shibata, S. Y. Kitamura, and S. Kamble: Metall. Mater. Trans. B, 2012, vol. 43, pp. 973–983.

    Article  Google Scholar 

  21. J. R. Grace, Trans. Inst. Chem. Eng., 1973, vol. 51, pp. 116–120.

    Google Scholar 

  22. Z. Yuan, K. Mukai, K. Takagi, and M. Ohtaka: J. Japan Inst. Metals, 2001, vol. 65, pp. 21–28.

    Google Scholar 

  23. L. Wang and Q. Mei: J. Mater. Sci. Technol., 2006, vol. 22, pp. 569–571.

    Google Scholar 

  24. E. V. Rozhitsina, S. Gruner, I. Kaban, W. Hoyer, V. E. Sidorov, and P. S. Popel: Russ. Metall. (Metally), 2011, vol. 2011, pp. 118–121.

    Article  Google Scholar 

  25. G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey Jr., G. L. Garner, U. Krebs, and S. K. Singer: J. Phys. Chem. Ref. Data, 1975, vol. 4, pp. 871–1178.

    Article  Google Scholar 

  26. S. Natsui, H. Takai, T. Kumagai, T. Kikuchi, R. O. Suzuki: Mater. Trans., 2014, vol. 55, pp. 1707–1715.

    Article  Google Scholar 

  27. S. Natsui, R. Nashimoto, H. Takai, T. Kumagai, T. Kikuchi, and R. O. Suzuki, Chem. Eng. Sci., 2016, vol. 141, pp. 342–355.

    Article  Google Scholar 

  28. P. de Gennes, F. Brochard–Wyart, and D. Quéré: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Yosioka Shoten, Kyoto, 2003, pp. 210–212.

    Google Scholar 

Download references

This study was supported by the Japan Oil, Gas, and Metals National Corporation (JOGMEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shungo Natsui.

Additional information

Manuscript submitted July 3, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsui, S., Nashimoto, R., Takai, H. et al. Temperature Dependence of Behavior of Interface Between Molten Sn and LiCl–KCl Eutectic Melt Due to Rising Gas Bubble. Metall Mater Trans B 47, 1532–1537 (2016). https://doi.org/10.1007/s11663-016-0618-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0618-9

Keywords

Navigation