Skip to main content
Log in

Dimensionless Analysis and Numerical Modeling of Rebalancing Phenomena During Levitation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electromagnetic levitation (EML) has proved to be a powerful tool for research activities in areas pertaining to materials physics and engineering. The customized EML setups in various fields, ranging from solidification to nanomaterial manufacturing, require the designing of stable levitation systems. Since the elevated droplet is opaque, the most effective way to research on EML is mathematical modeling. In the present study, a 3D model was built to investigate the rebalancing phenomenon causing instabilities during droplet melting. A mathematical model modified based on Hooke’s law (spring) was proposed to describe the levitation system. This was combined with dimensionless analysis to investigate the generation of levitation forces as it will significantly affect the behavior of the spring model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

F :

Levitation force, N

∇ ×:

Curl operator

H :

Magnetic field intensity vector, T

J :

Total current density vector, A/m2

Js :

Applied source current density vector, A/m2

Je :

Induced eddy current density vector, A/m2

Jv :

Velocity current density vector, A/m2

D1 :

Electric flux density vector, C/m2

t :

Time, s

E :

Electric field intensity vector, N/C

\( \nabla \cdot \) :

Curl operator

B :

Magnetic flux density vector, T

ρ 1 :

Electric charge density, C/m3

N :

Vector of shape functions

J* :

Complex conjugate of J

G :

Gravity, N

c:

Stiffness of the spring, N/m

λ:

The static deformation of the spring, m

Fresultant :

Resultant upward force, N

ω0 :

Angular frequency under free vibration, Hz

f s :

Frequency, Hz

ω :

Angular frequency under underdamping, Hz

γ :

Damping coefficient

y:

Position of the droplet (gravity direction), m

A:

Maximum amplitude, m

α:

Oscillation phase

C 0 , C :

Constant value

η :

Dimensionless number

I :

Current in the coil, A

μ :

Absolute permeability, N A−2

θ :

Angle

Lei :

Dimensionless number

a,b,c,d,e,f,g,e,g’:

Power exponents

ρ :

Electrical resistivity, Ω  m

f :

Angular frequency, Hz

δ :

Skin depth, m

X :

Horizontal distance between droplet center to coil center, m

Y :

Vertical horizontal distance between droplet center to coil center, m

D :

Diameter of the droplet, m

EML:

Electromagnetic levitation

Y :

Vertical horizontal distance between droplet center to coil center, m

Y i , \( Y_{1i} \), \( Y_{2i} \), \( Y_{3i} \) :

Vertical horizontal distance between droplet center to coil center

References

  1. E. C. Okress, D. M. Wroughton, G. Comenetz, P. H. Brace, and J. C R Kelly: J. Appl. Phys., 1952, vol. 23(5), pp. 545–52.

    Article  Google Scholar 

  2. S. Binder, P. K. Galenko, and D. M. Herlach: J. Appl. Phys., 2014, vol. 115(053511), pp. 1–11.

    Google Scholar 

  3. A. Seidel, W. Soellner, and C. Stenzel: J. Phys. Conf. Ser., 2011, vol. 327(012015), pp. 1–11.

    Google Scholar 

  4. K. Zhou, H. P. Wang, and B. Wei: Chem. Phys. Lett., 2012, vol. 521, pp. 52–54.

    Article  Google Scholar 

  5. Zhou K, Wang HP, Wei B (2013) Philos. Mag. Lett. 93(3): 138–41

    Article  Google Scholar 

  6. A. Kermanpur, B. N. Rizi, M. Vaghayenegar, and H. G. Yazdabadi: Mater. Lett., 2009, vol. 63(5), pp. 575–77.

    Article  Google Scholar 

  7. J. S. Luo, K. Li, X. B. Li, Y. J. Shu, and Y. J. Tang: J. Alloys Compd., 2014, vol. 615, pp. 333–37.

    Article  Google Scholar 

  8. J. Siwka: ISIJ Int., 2008, vol. 48(4), pp. 385–94.

    Article  Google Scholar 

  9. J. Siwka and A. Hutny: Metalurgija, 2009, vol. 48(1), pp. 23–27.

    Google Scholar 

  10. A. McLean: Metall. Mater. Trans. B, 2006, vol. 37, pp. 319–32.

    Article  Google Scholar 

  11. Zuliani DJ, McLean A (1979) Can. Metall. Q. 18: 323–31

    Article  Google Scholar 

  12. S. R. Berry, R. W. Hyers, L. M. Racz, and B. Abedian: Int. J. Thermophys., 2005, vol. 26(5), pp. 1565–81.

    Article  Google Scholar 

  13. V. Bojarevics and R. W. Hyers: JOM., 2012, vol 64, pp. 1089–96.

    Article  Google Scholar 

  14. L. Feng and W. Shi: Metall. Mater. Trans. B, 2015, vol. 46(4), pp. 1895–1901.

    Article  Google Scholar 

  15. J. Lee, X. Xiao, D. M. Matson, and R. W. Hyers: Metall. Mater. Trans. B, 2014, vol. 46, pp. 199–207.

    Google Scholar 

  16. S. Spitans, A. Jakovičs, E. Baake, and B. Nacke: Magnetohydrodynamics, 2011, vol. 47(4), pp. 461–73.

    Google Scholar 

  17. L. Gao, Z. Shi, D. Li, Y. Yang, G. Zhang, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B, 2015, published online.DOI: 10.1007/s11663-015-0457-0.

  18. Matula R.A. (1979) J. Phys. Chem. 8(4):1147

    Google Scholar 

  19. L. Gao, K. Chattopadhyay, G. Zhang, Y. Yang, Z. Shi, and A. McLean: in Conf. Metall., Canadian Institute of Mining, Metallurgy and Petroleum, Toronto, 2015, pp. 1–11.

Download references

Acknowledgements

The thanks are to the SimuTech Group, ANSYS Inc. for their support toward the mathematical modeling research performed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnor Chattopadhyay.

Additional information

Manuscript submitted December 13, 2015.

Appendix

Appendix

The calculation conditions in this study are listed in Table AI as follows:

Table AI Calculation Conditions in this Study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Shi, Z., Li, D. et al. Dimensionless Analysis and Numerical Modeling of Rebalancing Phenomena During Levitation. Metall Mater Trans B 47, 1905–1915 (2016). https://doi.org/10.1007/s11663-016-0608-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0608-y

Keywords

Navigation