Skip to main content
Log in

Investigation of Heat Transfer in Hot Stamping of Boron Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An optimization-based numerical procedure was developed to determine the tool temperature-dependent heat-transfer coefficient (HTC) between the blank and tools during the hot stamping of boron steel. During the quenching period, HTC decreased with the increasing tool temperature. There was no obvious linear relationship between the two. The HTCs were 2493 and 856 W m−2 K−1, respectively, under the tool temperatures of 373 K and 723 K (100 °C and 450 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\( T_{i,B}^{\text{Exp}} \) :

Blank experimental temperatures

\( T_{i,B}^{\text{Sim}} \) :

Blank calculating temperatures

\( T_{j,L}^{\text{Exp}} \) :

Lower tool experimental temperatures

\( T_{j,L}^{\text{Sim}} \) :

Lower tool calculating temperatures

δ B :

Error function of blank temperature

δ L :

Error function of lower tool temperature

B:

Blank

L:

Lower tool

References

  1. T. Altan: Stamp. J., 2006, vol. 12, pp. 40-41.

    Google Scholar 

  2. B. Hochholdinger, P. Hora, H. Grass, and A. Lipp: 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet 2011), 21-26 August 2011, Seoul, Korea, K. Chung, N.H. Heung, H. Huh, F. Barlat, and M.-G. Lee, eds., 2011, pp. 618–25.

  3. P. Hein: Adv. Mater. Res., 2005, vol. 6-8, pp. 763-70.

    Article  Google Scholar 

  4. M. Jonsson: 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, 22-24 October 2008, Kassel, Germany, K. Steinhoff, M. Oldenburg, and B. Prakash, eds., 2008, pp. 253–65.

  5. P. Åkerström: Modelling and simulation of hot stamping. Ph.D. Dissertation, University of Luleå, 2006.

  6. M. Babbit: Steel Res. Int., 2006, vol. 77(9-10), pp. 620–26.

    Google Scholar 

  7. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210(15), pp. 2103-18.

    Article  Google Scholar 

  8. M. Maikranz-Valentin, U. Weidig, U. Schoof, H.H. Becker, and K. Steinhoff: Steel Res. Int., 2008, vol. 79(2), pp. 92-97.

    Google Scholar 

  9. D.D. Munera, A. Pic, D. Abou-Khalil, F. Shmit, and F. Pinard: SAE Int. J. Mater. Manuf., 2009, vol. 1(1), pp. 472-9.

    Article  Google Scholar 

  10. D.D. Munera, F. Pinard, and L. Lacassin: SAE Trans. J. Mater. Manuf., 2007, vol. 115, pp. 796-804.

    Google Scholar 

  11. J. Wilsius, B. Tavernier, and D. Abou-Khalil: 3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel, 13–17 June 2011, Kassel, Germany, M. Oldenburg, K. Steinhoff, and B. Prakash, eds., 2011, pp. 427–35.

  12. N. Ma, P. Hu, and Y.H. Zhao: 3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel, 13–17 June 2011, Kassel, Germany, M. Oldenburg, K. Steinhoff, and B. Prakash, eds., 2011, pp. 331-40.

  13. A. Bardelcik, C. Salisbury, S. Winkler, M.A. Wells, and M.J. Worswick: Int. J. Impact Eng., 2010, vol. 37 (6), pp. 694-702.

    Article  Google Scholar 

  14. T. Svec, and M. Merklein: 3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel, 13-17 June 2011, Kassel, Germany, M. Oldenburg, K. Steinhoff, and B. Prakash, eds., 2011, pp. 21-29.

  15. P. Feuser, T. Schweiker, and M. Merklein: 10th International Conference on Technology of Plasticity, 25–30 September 2011, Aachen, Germany, G. Hirt and A.E. Tekkaya, eds., 2011, pp. 408–13.

  16. J. Banik, F.J. Lenze, S. Sikora, and R. Laurenz: 3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel, 13–17 June 2011, Kassel, Germany, M. Oldenburg, K. Steinhoff, and B. Prakash, eds., 2011, pp. 13–20.

  17. R. George: Hot forming of boron steels with tailored mechanical properties: experiments and numerical simulations, Master Dissertation, University of Waterloo, 2011.

  18. R. George, A. Bardelcik, and M.J. Worswick: J. Mater. Process Technol., 2012, vol. 212, pp. 2386-99.

    Article  Google Scholar 

Download references

This study was supported by National Natural Science Foundation of China (51205162) and the National Natural Science Foundation of China (51275203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhao.

Additional information

Manuscript submitted October 12, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, C., Meng, S. et al. Investigation of Heat Transfer in Hot Stamping of Boron Steel. Metall Mater Trans B 47, 824–827 (2016). https://doi.org/10.1007/s11663-015-0577-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0577-6

Keywords

Navigation