Skip to main content
Log in

Effect of Magnesia-Carbon Refractory on the Kinetics of MgO·Al2O3 Spinel Inclusion Generation in Extra-Low Oxygen Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

MgO-base refractory and MgO bearing slag both have the potential to supply Mg to the molten steel and then prompt the spinel generation. In this article, the effect of MgO-C refractory on the kinetics of spinel transformation was investigated on a laboratorial scale by inserting a MgO-C refractory rod into the Al-killed molten steel. With the refractory/steel reaction time increasing from 1 to 10 minutes, inclusions of Al2O3 gradually degraded into MgO·Al2O3 spinel and the high MgO content inclusion was finally equilibrium with the MgO-C refractory. This interaction process involved Mg supply reactions, Mg transfer in molten steel, and spinel generation reactions. Although MgO-C refractory could supply Mg into the molten steel through MgO reduction reaction both by Al in the melt and by carbon in the refractory, it was found that the Mg mainly came from MgO reduction by the carbon in the refractory. Mg transfer in molten steel was set as the rate controlling step of spinel generation according to theoretical analysis. A mathematic model was developed based on this rate controlling step, and the model calculation agreed well with the experimental results. The Mg diffusion rate was obtained by the regression of the experimental results as 5 × 10−4 m/s. The mechanism of MgO·Al2O3 generation was clarified, and the reaction between dissolved Mg and Al2O3 inclusions occurred first and then the extra dissolved Mg reacted with dissolved Al to generate MgO·Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. I. Ganesh: Int. Mater. Rev., 2013, vol. 58 (2), pp. 63–112.

    Article  Google Scholar 

  2. N. Shinozaki, N. Echida, K. Mukai, Y. Takahashi, and Y. Tanaka: Tetsu-to-Hagane, 1994, vol. 80 (10), pp. 748–53.

    Google Scholar 

  3. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50 (10), pp. 1333–46.

    Article  Google Scholar 

  4. G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40 (2), pp. 121–8.

    Article  Google Scholar 

  5. A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S-Y. Kitamura: ISIJ Int., 2014, vol. 54 (10), pp. 2230–8.

    Article  Google Scholar 

  6. A. Harada, N. Mabuoka, H. Shibata, M. Zeze, N. Asahara, F. Huang, and S-Y. Kitamura: ISIJ Int., 2014, vol. 54 (11), pp. 2569–77.

    Article  Google Scholar 

  7. N. Verma, P.C. Pistorius, R.J. Fruenhan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  8. J. Poirier: Metall. Res. Technol., 2015, vol. 112 [online].

  9. S. Jansson, V. Brabie, and P. Jonsson: Ironmaking Steelmaking, 2006, vol. 33 (5), pp. 389–97.

    Article  Google Scholar 

  10. V. Brabie: ISIJ Int., 1996, vol. 36, pp. S109–12.

    Article  Google Scholar 

  11. F. Huang, C. Liu, N. Maruoka, and S.-Y. Kitamura: Ironmak. Steelmak. [online].

  12. G. Yang, X. Wang, F. Huang, and W. Wang: Steel Res. Int., 2013, vol. 84 (9999), pp. 1–9.

    Google Scholar 

  13. Slag atlas, 2nd ed., Ed. Verein Deutscher Eisenhuttenleute.

  14. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1131–9.

    Article  Google Scholar 

  15. H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, Vol. 28B, pp. 953–56.

    Article  Google Scholar 

  16. X. Wang, M. Jiang, B. Chen, and H. Li: Sci. China Technol. Sci., 2012, vol. 55 (7), pp. 1863–72.

    Google Scholar 

  17. X. Wang, X. Li, Q. Li, F. Huang, H. Li, and J. Yang: Steel Res. Int., 2014, vol. 85 (2), pp. 155–63.

    Article  Google Scholar 

  18. H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36 (8), pp. 983–90.

    Article  Google Scholar 

  19. W.G. Seo, W.H. Han, J.S. Kim, and J.J. Pak: ISIJ Int., 2003, vol. 43 (2), pp. 201–8.

    Article  Google Scholar 

  20. M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2008, vol. 48 (7), pp. 885–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Liu.

Additional information

Manuscript submitted September 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, F., Suo, J. et al. Effect of Magnesia-Carbon Refractory on the Kinetics of MgO·Al2O3 Spinel Inclusion Generation in Extra-Low Oxygen Steels. Metall Mater Trans B 47, 989–998 (2016). https://doi.org/10.1007/s11663-015-0540-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0540-6

Keywords

Navigation