Skip to main content

Advertisement

Log in

Determination of Cavity Dimensions Induced by Impingement of Gas Jets onto a Liquid Bath

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper presents an experimental and theoretical study on the cavity profile induced by the impingement of top-blown multiple gas jets onto a water or oil/water bath. The depth and diameter of the cavity were measured with respect to the lance height, gas flow rate, jets inclination angle, and oil volume. The experimental results show that the cavity depth increases with the increase of gas flow rate or oil thickness but the decrease of lance height or jets inclination angle. The cavity diameter is much less affected by gas flow rate compared to other variables. Then, the importance of the surface tension in the modeling of the cavity was theoretically identified. It was found that in the cratering process, the effect of the liquid surface tension on the cavity depth could be remarkably significant for a basic oxygen furnace (BOF) cold model but negligible for a real BOF steelmaking system. An improved theoretical model was hence proposed and validated using the experimental data obtained from both the single- or two-layer liquid baths. The new model includes not only the explicit consideration of the liquid surface tension but also that of the energy utilization efficiency of the jets impinging kinetic energy contributed to the cratering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. N. Dinh, V. A. Bui, R. R. Nourgaliev, J. A. Green and B. R. Sehgal: Nucl. Eng. Des., 1998, vol. 189, pp. 299-327.

    Article  Google Scholar 

  2. F. Memoli, C. Mapelli, P. Ravanelli and M. Corbella: ISIJ Int., 2004, vol. 44, pp. 1342-49.

    Article  Google Scholar 

  3. H. Milosevic, S. Stevovic and D. Petkovic: Int. J. Heat Mass Transf., 2011, vol. 54, pp. 4275-79.

    Article  Google Scholar 

  4. M. S. Baawain, M. G. El-Din and D. W. Smith: Int. J. Multiphase Flow, 2012, vol. 40, pp. 158-65.

    Article  Google Scholar 

  5. M. A. Ehteram, H. B. Tabrizi, G. Ahmadi, M. Safari and M. A. Mirsalim: J. .Aerosol Sci., 2013, vol. 65, pp. 49-57.

    Article  Google Scholar 

  6. A. Tilliander, L. T. I. Jonsson and P. G. Jönsson: Steel Research Int., 2014, vol. 85, pp. 376-87.

    Article  Google Scholar 

  7. M. Martín, C. Blanco, M. Rendueles and M. Díaz: Ind. Eng. Chem. Res., 2003, vol. 42, pp. 911-19.

    Article  Google Scholar 

  8. H. Clarke, H. A. Martinez, R. Crookes and D. S. Wen: Int. J. Multiphase Flow, 2010, vol.36, pp. 940-49.

    Article  Google Scholar 

  9. F. Oeters: Metallurgy of steelmaking, Springer-Verlag, German, 1989.

    Google Scholar 

  10. N. Dogan, G. A. Brooks and M. A Rhamdhani: ISIJ Int., 2011, vol.51, pp. 1086-92.

    Article  Google Scholar 

  11. H.J. Odenthal, U. Falkenreck, and J. Schlüter: ECCOMAS CFD Proc., TU Delft, Netherlands, 2006.

  12. R. B. Banks and D. V. Chandrasekhara: J. Fluid Mech., 1963, vol. 15, pp. 13-34.

    Article  Google Scholar 

  13. R. B. Banks and A. Bhavamai: J. Fluid Mech., 1965, vol.23, pp. 229-40.

    Article  Google Scholar 

  14. F. R. Cheslak, J. A. Nicholls and M. Sichel: J. Fluid Mech., 1969, vol. 36, pp. 55-63.

    Article  Google Scholar 

  15. F. Qian, R. Mutharasan and B. Farouk: Metall. Mater. Trans. B., 1996, vol. 27, pp. 911-20.

    Article  Google Scholar 

  16. A. R. N. Meidani, M. Isac, A. Richardson and A. Cameron and R. I. L. Guthrie: ISIJ Int., 2004, vol.44, 1639-45.

    Article  Google Scholar 

  17. N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura and M. Iwasaki: Steel Res. Int., 2011, vol.82, pp. 587-94.

    Article  Google Scholar 

  18. H. Y. Hwang and G. A. Irons: Metall. Mater. Trans. B., 2012, vol. 43, pp. 302-15.

    Article  Google Scholar 

  19. M. Ek and S. C. Du: Steel Res. Int., 2012, vol. 83, pp. 678-85.

    Article  Google Scholar 

  20. Q. Li, M. M. Li, S. B. Kuang and Z. S. Zou: Metall. Mater. Trans. B., 2015, vol. 46, pp. 1494-1509.

    Article  Google Scholar 

  21. M. M. Li, Q. Li, L. Li, Y. B. He and Z. S. Zou: Ironmaking and Steelmaking, 2014, vol.41, pp. 699-709.

    Article  Google Scholar 

  22. W. Pilacinski, K.W. Szewczyk, M. Lehtimäki and K. Willeke: J. Aerosol Sci., 1990, vol. 21, pp. 977-82.

    Article  Google Scholar 

  23. S. C. Koria and K. W. Lange: Metall. Mater. Trans. B, 1984, vol. 15, pp. 109-16.

    Article  Google Scholar 

  24. Q. L. He and N. Standish: ISIJ Int., 1990, vol. 30, pp. 305-09.

    Article  Google Scholar 

  25. M. J. Luomala., T. M. J. Fabritius, E. O. Virtanen, T. P. Siivola, T. L. J. Fabritius, H. Tenkku and J. J. Härkki: ISIJ Int., 2002, vol. 42, pp. 1219-24.

  26. M. S. Lee, S. L. O’Rourke and N. A. Molloy: Scandinavian Journal of Metallurgy, 2003, vol. 32, pp. 281-88.

    Article  Google Scholar 

  27. M. J. Luomala, T. M. J. Fabiritius and J. J. Harkki: ISIJ Int., 2004, vol.44, pp. 809-16.

    Article  Google Scholar 

  28. Q. Li, M. X. Feng and Z .S. Zou: ISIJ Int., 2013, vol. 53, pp. 1365-71.

    Article  Google Scholar 

  29. S. C. Koria and K. W. Lange: Steel Res. Int., 1987, vol. 58, 421-26.

    Google Scholar 

  30. H. Y. Hwang and G. A. Irons: Metall. Mater. Trans. B, 2011, vol. 42, pp. 575-91.

    Article  Google Scholar 

  31. A. Nordquist, N. kumbhat, L. Jonsson and P. Jönsson: Steel Res. Int., 2006, vol. 77, pp. 82-90.

    Google Scholar 

  32. S. Sabah, G.A. Brooks, and J. Naser: 2013 AISTech Conference Proceedings, Warrendale, PA, 2013, p. 2083, http://digital.library.aist.org/pages/PR-364-202.htm.

  33. S. Sabah and G. A. Brooks: ISIJ Int., 2014, vol. 54, pp. 836-44.

    Article  Google Scholar 

  34. S. Sabah and G. A. Brooks: Metall. Mater. Trans. B, 2015, vol. 46, pp. 863-72.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Natural Science Foundation of China (Grant Nos. 51104037, 50774019) and the Fundamental Research Funds of the Central Universities of China (Grant No. N120402010, N140204008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Manuscript submitted May 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, Q., Kuang, S. et al. Determination of Cavity Dimensions Induced by Impingement of Gas Jets onto a Liquid Bath. Metall Mater Trans B 47, 116–126 (2016). https://doi.org/10.1007/s11663-015-0490-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0490-z

Keywords

Navigation