Skip to main content
Log in

Numerical Simulation of the Interaction Between Supersonic Oxygen Jets and Molten Slag–Metal Bath in Steelmaking BOF Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The impinging of multiple jets onto the molten bath in the BOF steelmaking process plays a crucial role in reactor performance but is not clearly understood. This paper presents a numerical study of the interaction between the multiple jets and slag–metal bath in a BOF by means of the three-phase volume of fluid model. The validity of the model is first examined by comparing the numerical results with experimental measurement of time-averaged cavity dimensions through a scaled-down water model. The calculated results are in reasonably good agreement with the experimental data. The mathematical model is then used to investigate the primary transport phenomena of the jets-bath interaction inside a 150-ton commercial BOF under steelmaking conditions. The numerical results show that the cavity profile and interface of slag/metal/gas remain unstable as a result of the propagation of surface waves, which, likely as a major factor, governs the generation of metal droplets and their initial spatiotemporal distribution. The total momentum transferred from the jets into the bath is consumed about a half to drive the movement of slag, rather than fully converted as the stirring power for the metal bath. Finally, the effects of operational conditions and fluid properties are quantified. It is shown that compared to viscosity and surface tension of the melts, operating pressure and lance height have a much more significant impact on the slag–metal interface behavior and cavity shape as well as the fluid dynamics in the molten bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. K. S. Coley: J. Min. Metall. Sect. B-Metall., 2013, vol. 49, pp. 191-199.

    Article  Google Scholar 

  2. N. Dogan, G. A. Brooks, M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1102-1109.

    Article  Google Scholar 

  3. M. Lv, R. Zhu, Y. G. Guo, Y. W. Wang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1560-1571.

    Article  Google Scholar 

  4. Y. Li, W. T. Lou, M. Y. Zhu: Ironmaking Steelmaking, 2013. vol. 40, pp. 505-514.

    Article  Google Scholar 

  5. X. Zhou, M. Ersson, L. Zhong, J. Yu, P. Jönsson: Steel Res. Int., 2014, vol. 85, pp. 273-281.

    Article  Google Scholar 

  6. M. Ersson, L. Höglund, A. Tilliander, L. Jonsson and P. Jönsson: ISIJ Int., 2008, vol. 48, pp. 147-153.

    Article  Google Scholar 

  7. H. J. Odenthal, J. Kempken, J. Schluter, W. H. Emling: Iron & Steel Techn., 2007, vol. 4, pp. 71-89.

    Google Scholar 

  8. Y. Doh, P. Chapelle, A. Jardy, G. Djambazov, K. Pericleous, G. Ghazal, P. Gardin: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 653-670.

    Article  Google Scholar 

  9. N. Dogan, G. A. Brooks, M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1086-1092.

    Article  Google Scholar 

  10. N. Dogan, G. A. Brooks, M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093-1101.

    Article  Google Scholar 

  11. Y.Lytvynyuk, J. Schenk, M. Hiebler, A. Sormann: Steel Res. Int., 2013, vol. 85, pp. 537-543.

    Article  Google Scholar 

  12. Y.Lytvynyuk, J. Schenk, M. Hiebler, A. Sormann: Steel Res. Int., 2013, vol. 85, pp. 544-563.

    Article  Google Scholar 

  13. H. Y. Hwang and G. A. Irons: Metall. Mater. Trans. B, 2011, vol. 43B, pp. 302-315.

    Google Scholar 

  14. M. Lee, V. Whitney and N. Molloy: Scan. J. Metall., 2001, vol. 30, pp. 330-336.

    Article  Google Scholar 

  15. M Alam, J Naser, G Brooks and A Fontana: ISIJ Int., 2012, vol. 52, pp. 1026-1035.

    Article  Google Scholar 

  16. M. Ersson, A. Tilliander, L. Jonsson and P. Jönsson: ISIJ Int., 2008, vol. 48, pp. 377-384.

    Article  Google Scholar 

  17. R.B. Banks and A. Bhavamai: J. Fluid Mech., 1965, vol. 23, pp. 229-240.

    Article  Google Scholar 

  18. F.R. Cheslak, J. A. Nicholls and M. Sichel: J. Fluid Mech., 1969, vol. 36, pp. 55-63.

    Article  Google Scholar 

  19. F. Qian, R. Mutharasan and B. Farouk: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 911-920.

    Article  Google Scholar 

  20. A. Chatterjee and A. V. Bradshaw: Journal of Iron Steel Institute, 1972, vol. 210, pp. 179-187.

    Google Scholar 

  21. S.C. Koria: Can. Metall. Quart., 1992, vol. 8, pp. 105-112.

    Article  Google Scholar 

  22. T. Kumagai and M. Iguchi: ISIJ Int., 2001, vol. 41, pp. S52-55.

    Article  Google Scholar 

  23. N.A. Molloy: Journal of Iron Steel Institute, 1970, vol, 56, pp. 943-950.

    Google Scholar 

  24. E. Berberovic, N. P. Van Hinsberg, S. Jakirlic, I. V. Roisman, C. Tropea: Phys. Rev. E, 2009, vol. 79, pp. 036306.

    Article  Google Scholar 

  25. H. Y. Hwang, G. A. Irons: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 575-591.

    Article  Google Scholar 

  26. N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, M. Iwasaki: Steel Res. Int., 2011, vol. 82, 587-594.

    Article  Google Scholar 

  27. F. Memoli, C. Mapelli, P. Ravanelli and M. Corbella: ISIJ Int., 2004, vol. 44, pp. 1342-1349.

    Article  Google Scholar 

  28. N. Huda, J. Naser, G. Brooks, M.A. Reuter and R.W. Matusewicz: Metall. Trans. B, 2009, vol. 41B, pp. 35-50.

    Google Scholar 

  29. J. Solórzano-López, R. Zenit and M.A. Ramírez-Argáez: Applied Mathematical Modelling, 2011, vol. 35, pp. 4991-5005.

    Article  Google Scholar 

  30. H. Milosevic, S. Stevovic and D. Petkovic: International Journal of Heat and Mass Transfer, 2011, vol. 54, pp. 4275-4279.

    Article  Google Scholar 

  31. D. Muñoz-Esparza, J.-M. Buchlin, K. Myrillas and R. Berger: Applied Mathematical Modelling, 2012, vol. 36, pp. 2687-2700.

    Article  Google Scholar 

  32. H. Wang, R. Zhu,Y.L.Gu and C. J. Wang: Canadian Metallurgical Quarterly, 2014, vol. 53, pp. 367-380.

    Article  Google Scholar 

  33. Q.G. Reynolds: Proceedings of 9th South African Conference on Computational and Applied Mechanics, Somerset West, 14–16 January, 2014.

  34. C.W. Hirt and B. D. Nichols: J. Comp. Phys., 1981, vol. 39, pp. 201-225.

    Article  Google Scholar 

  35. J.U. Brackbill, D.B. Kothe and C. Zemach: J. Comp. Phys., 1992, vol. 100, pp. 335-354.

    Article  Google Scholar 

  36. O. Ubbink and R.I. Isssa: J. Comp. Phys., 1999, vol. 153, pp. 26-50.

    Article  Google Scholar 

  37. B. E. Launder, D. B. Spalding: Lectures in Mathematical Model of Turbulence, Academic Press, London, England 1972, p. 124.

    Google Scholar 

  38. M. J. Luomala, T. M. J. Fabritius, E. O. Virtanen, T. P. Siivola, J. J. Harkki: ISIJ Int., 2002, vol. 42, pp. 944-949.

    Article  Google Scholar 

  39. B.T. Maia, R.K. Imagawa, C.J. Batista, A.C. Petrucelli, and R.P. Tavares: 2013 AISTech Conference Proceedings, Warrendale, PA, 2013, http://digital.library.aist.org/pages/PR-364-200.htm.

  40. Q. Li, M. X. Feng, Z. S. Zou: ISIJ Int., 2013, vol. 53, pp. 1365-1371.

    Article  Google Scholar 

  41. M. M. Li, Q. Li, L, Li, Z. S. Zou: Ironmaking Steelmaking, 2014, vol. 41, pp. 699-709.

    Article  Google Scholar 

  42. D. I. Pullin: J. Fluid Mech., 1982, vol. 119, pp. 507-532.

    Article  Google Scholar 

  43. S. Sabah and G. Brooks: Metall. Mater. Trans. B, 2014, (DOI: 10.1007/s11663-014-0238-1).

    Google Scholar 

  44. S. Sabah, G.A. Brooks, and J. Naser: 2013 AISTech Conference Proceedings, Warrendale, PA, 2013, p. 2083, http://digital.library.aist.org/pages/PR-364-202.htm.

  45. S. Sabah, G.A. Brooks: ISIJ Int., 2014, vol. 54, pp. 836-844.

    Article  Google Scholar 

  46. G.A.B. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Irons: ISIJ Int., 2003, vol. 43, pp. 983–989.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51104037) and the Fundamental Research Funds for the Central Universities of China (Grant No. N120402010) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Manuscript submitted March 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, M., Kuang, S. et al. Numerical Simulation of the Interaction Between Supersonic Oxygen Jets and Molten Slag–Metal Bath in Steelmaking BOF Process. Metall Mater Trans B 46, 1494–1509 (2015). https://doi.org/10.1007/s11663-015-0292-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0292-3

Keywords

Navigation