Skip to main content
Log in

High-Frequency Electromagnetic Purification of Silicon

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of a high-frequency electromagnetic (EM) field on the removal of nonmetallic inclusions from molten silicon was experimentally investigated. Inclusion separation efficiencies of up to 99 pct were reached. The separation efficiency was independent of the particle concentration in the melt and increased significantly with increases in the frequency, separation time, and coil current. Particles were separated from the silicon matrix and relocated to the top, bottom, and side walls of the crucible due to the effect of three mechanisms: induced secondary fluid flow which carried particles from the bulk of the melt; EM body force which worked in the skin-depth area to trap particles on the side wall; and fluid shear force due to the local acceleration of molten silicon, which promoted the settling of particles to the bottom of the crucible and also carried particles toward the top. Higher coil current enhanced the strength of the magnetic field which enhanced fluid flow, while higher frequency also enhanced the fluid acceleration, and the effect of current was more pronounced leading to better particle separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. D. Sarti and R. Einhaus, Solar Energy Materials and Solar Cells 2002, vol. 72, no. 1-4, pp. 27-40.

    Article  Google Scholar 

  2. N.B. Mason: Proceedings of the Photovoltaic Science, Applications & Technology Conference, Durham, 2007, pp. 43–46.

  3. A. Lotnyk, O. Breitenstein and H. Blumtritt, Solar Energy Materials & Solar Cells 2008, vol. 92, pp. 1236-1240.

    Article  Google Scholar 

  4. L. Zhang, E. Øvrelid, S. Senanu, B. Agyei-Tuffour, and A.N. Femi: Rewas2008: 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, TMS, Warrendale, PA, 2008, pp. 1011–26.

  5. O. S. Fishman, Advanced materials & processes 2008, vol. 166, no. 10, pp. 33-34.

    Google Scholar 

  6. O. S. Fishman, Advanced materials & processes 2008, vol. 166, no. 9, pp. 39-40.

    Google Scholar 

  7. G. Lavorel and M. LeBars, PHYSICAL REVIEW E 2009, vol. 80, pp. 046324-1-046324-8.

    Article  Google Scholar 

  8. L. Zhang and A. Ciftja, Solar Energy Materials and Solar Cells 2008, vol. 92, no. 11, pp. 1450-1461.

    Article  Google Scholar 

  9. A. Kolin, Science 1953, vol. 117, no. 2, pp. 134-137.

    Article  Google Scholar 

  10. D. Leenov and A. Kolin, Journal of Chemical Physics 1954, vol. 22, no. 4, pp. 683-688.

    Article  Google Scholar 

  11. Y. Tanimoto and Y. Kakuda, J. Phys. Conf. Ser., 2009, vol. 156, p. 012030.

    Article  Google Scholar 

  12. J. Y. Hwang, M. Takayasu, F. J. Friedlaender and G. Kullerud, J. Appl. Phys. 1984, vol. 55, pp. 2592-2594.

    Article  Google Scholar 

  13. M. Motokawa, Rep. Prog. Phys. 2004, vol. 67, pp. 1995-2052.

    Article  Google Scholar 

  14. Z. Sun, M. Guo, F. Verhaeghe, J. Vleugels, O. Van-der-Biest and B. Blanpain, Progress In Electromagnetics Research, PIER 2010, vol. 103, pp. 1-16.

    Article  Google Scholar 

  15. K. Takahashi and S. Taniguchi, ISIJ International 2003, vol. 43, no. 6, pp. 820-827.

    Article  Google Scholar 

  16. F. Yamao, K. Sassa, K. Iwai and S. Asai, Tetsu-to-Hagane 1997, vol. 83, no. 1, pp. 30-35.

    Google Scholar 

  17. A. Dong, L. Zhang and L. N. W. Damoah, JOM 2011, vol. 63, no. 1, pp. 23-27.

    Article  Google Scholar 

  18. A. Dong, L. Damoah, and L. Zhang: Supplemental Proceedings: Materials Processing and Energy Materials, vol. I, TMS, Orlando, 2011, pp. 669–76.

  19. L.N.W. Damoah and L. Zhang: EPD Congress 2012, L. Zhang, A. Antoine and W. Cong, eds., The Minerals, Metals & Materials Society (TMS), Orlando, FL, 2012, pp. 501–08.

  20. L.-P. Wang and M. R. Maxey, J. Fluid Mech. 1993, vol. 256, pp. 27-68.

    Article  Google Scholar 

  21. J. Ruiz, D. Macias and F. Peters, PNAS 2004, vol. 101, no. 51, pp. 17720-17724.

    Article  Google Scholar 

  22. A. Aliseda, A. Cartellier, F. Hainaux and J. C. Lasheras, J. Fluid Mech. 2002, vol. 468, pp. 77-105.

    Article  Google Scholar 

  23. S. Makarov, R. Ludeig and D. Apelian, IEEE Transactions on Magnetics 2000, vol. 36, no. 4, pp. 2015-2021.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy (Award No. DE-EE0000575), the Material Research Center (MRC), and the Intelligent Systems Center (ISC) at Missouri University of Science and Technology (Missouri S&T). The contribution of Dr. Kent D. Peaslee at the Department of Materials Science and Engineering, Missouri S&T, who passed away in the course of this study, is greatly acknowledged. The authors are also grateful for support from the National Science Foundation China (Grant No. 51334002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted June 30, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damoah, L.N.W., Zhang, L. High-Frequency Electromagnetic Purification of Silicon. Metall Mater Trans B 46, 2514–2528 (2015). https://doi.org/10.1007/s11663-015-0447-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0447-2

Keywords

Navigation