Skip to main content
Log in

New Insight into Combined Model and Revised Model for RTD Curves in a Multi-strand Tundish

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The analysis for the residence time distribution (RTD) curve is one of the important experimental technologies to optimize the tundish design. But there are some issues about RTD analysis model. Firstly, the combined (or mixed) model and the revised model give different analysis results for the same RTD curve. Secondly, different upper limits of integral in the numerator for the mean residence time give different results for the same RTD curve. Thirdly, the negative dead volume fraction sometimes appears at the outer strand of the multi-strand tundish. In order to solve the above problems, it is necessary to have a deep insight into the RTD curve and to propose a reasonable method to analyze the RTD curve. The results show that (1) the revised model is not appropriate to treat with the RTD curve; (2) the conception of the visual single-strand tundish and the combined model with the dimensionless time at the cut-off point are applied to estimate the flow characteristics in the multi-strand tundish; and that (3) the mean residence time at each exit is the key parameter to estimate the similarity of fluid flow among strands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Mazumdar and R. I. L. Guthrie: ISIJ Int., 1999, vol. 39, no. 6, pp 524-547.

    Article  Google Scholar 

  2. K. Chattopadhyay, M. Isac and R. I. L. Guthrie: ISIJ Int., 2010, vol. 50, no. 3, pp 331-348.

    Article  Google Scholar 

  3. H. Lei, Y. Zhao, J. Bao, C. Liu, H. Chen and J. He: Acta Metall. Sin., 2010, vol 46, no. 9, pp 1109-1114.

    Article  Google Scholar 

  4. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36, no. 6, pp 667-672.

    Article  Google Scholar 

  5. Y. Sahai and R. Ahuja: Ironmaking Steelmaking, 1986, vol. 13, no. 5, pp 241-247.

    Google Scholar 

  6. P. K. Jha, S. K. Dash and S. Kumar: ISIJ Int., 2001, vol. 41, no. 12, pp 1437-1446.

    Article  Google Scholar 

  7. 7 A. Tripathi and S. K. Ajmani: ISIJ Int., 2011, vol. 51, no. 10, pp 1647-1656.

    Article  Google Scholar 

  8. S. Yang, L. Zhang, J. Li, and K. Peaslee: ISIJ Int., 2009, vol. 49, no. 10, pp 1551-1560.

    Article  Google Scholar 

  9. 9 A. Cwudzinski: Steel Res. Int., 2010, vol. 81, no.2, pp 123-131.

    Article  Google Scholar 

  10. 10 S. X. Liu, X. M. Yang, L. Du, L. Li and C. Z. Liu: ISIJ Int., 2008, vol. 48, no. 12, pp 1712-1721.

    Article  Google Scholar 

  11. 11 R. K. Singh, A. Paul, A. K. Ray: Scandinavian Journal of Metallurgy, 2003, vol. 31, no. 3, pp 137-146.

    Article  Google Scholar 

  12. D. Mazumdar, G. Yamanoglu and R. I. L. Guthrie: Steel Res.,1997, vol. 68, no. 7, pp 293-300.

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank the financial support from Liaoning BaiQianWan Talents Program (2013921073), Open Funds of the State Key Laboratory of Advanced Metallurgy at the University of Science and Technology of Beijing (KF13-10), and National Natural Science Foundation of China and Shanghai Baosteel (No. U1460108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lei.

Additional information

Manuscript submitted March 25, 2013.

Appendix Revised Model

Appendix Revised Model

In the previous paper[4], the mean residence time of the C-curve is defined as follows:

$$ {\tilde{t}_{\text{C}} = \frac{{\int_{0}^{2\tau } {Ct{\text{d}}t} }}{{\int_{0}^{2\tau } {C{\text{d}}t} }}}. $$
(A1)

Then the related dimensionless mean residence time can be expressed as

$$ {\tilde{\theta }_{\text{C}} = \frac{{\tilde{t}_{\text{C}} }}{\tau } = \frac{{\int_{0}^{2\tau } {Ct{\text{d}}t} }}{{\tau \int_{0}^{2\tau } {C{\text{d}}t} }}}. $$
(A2)

So the dead volume fraction can be calculated by

$$ {\tilde{v}_{\text{d}} = 1 - \frac{{\int_{0}^{2\tau } {C{\text{d}}t} }}{{\int_{0}^{\infty } {C{\text{d}}t} }}\tilde{\theta }_{\text{C}} = 1 - \frac{{\int_{0}^{2\tau } {C{\text{d}}t} }}{{\int_{0}^{\infty } {C{\text{d}}t} }}\frac{{\int_{0}^{2\tau } {Ct{\text{d}}t} }}{{\tau \int_{0}^{2\tau } {C{\text{d}}t} }} = 1 - \frac{{{{\int_{0}^{2\tau } {Ct{\text{d}}t} } \mathord{\left/ {\vphantom {{\int_{0}^{2\tau } {Ct{\text{d}}t} } {\int_{0}^{\infty } {C{\text{d}}t} }}} \right. \kern-0pt} {\int_{0}^{\infty } {C{\text{d}}t} }}}}{\tau }}. $$
(A3)

If the dead volume fraction is expressed as the general form in the combined model

$$ {v_{\text{d}} = 1 - \frac{{\bar{t}}}{\tau }}, $$
(A4)

then the mean residence time can be rewritten as

$$ {\bar{t} = \frac{{\int_{0}^{2\tau } {Ct{\text{d}}t} }}{{\int_{0}^{\infty } {C{\text{d}}t} }}}. $$
(A5)

This is the mean residence time in the revised model in Table I.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H. New Insight into Combined Model and Revised Model for RTD Curves in a Multi-strand Tundish. Metall Mater Trans B 46, 2408–2413 (2015). https://doi.org/10.1007/s11663-015-0435-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0435-6

Keywords

Navigation