Skip to main content
Log in

Aluminum Deoxidation Equilibria in Liquid Iron: Part I. Experimental

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to provide accurate information for refining of steel containing more than 1 mass pct Al, previously known information about Al deoxidation equilibria in liquid iron was critically reviewed. New Al deoxidation equilibria, Al and O contents in liquid iron in equilibrium with solid Al2O3 were measured at 1873 K and 1923 K (1600 °C and 1650 °C) over the whole Al composition range, 0.0027 < [pct Al] < 100. In order to secure the deoxidation equilibria, in the present study, the Al deoxidation experiments were carried out by employing three different methods: (1) traditional Al deoxidation by the addition of Al into Fe-O alloys, (2) oxidation of Al in Fe-Al alloys by the addition of Fe2O3 as an oxygen source, and (3) addition of CaO flux for an effective removal of suspended Al2O3 inclusions in liquid alloys containing high Al. In addition, in the present study, the O solubility limit in pure Al melt in equilibrium with solid Al2O3 was also measured in the temperature range from 1673 K to 1873 K (1400 °C to 1600 °C). The present experimental results provide a complete set of Al deoxidation equilibria in liquid iron which may be useful for the estimation of residual oxygen level and alumina inclusion formation in high Al steel processing. Interaction parameter formalism, which was originally proposed by Wagner and Chipman and has been widely used to interpret the Al deoxidation equilibria in liquid iron, was found to be inapplicable. Limitation of the interaction parameter formalism at high Al content in liquid Fe was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. A. Gokcen and J. Chipman: J. Met., 1953, vol. 197, pp. 173-78.

    Google Scholar 

  2. A. McLean and H.B. Bell: J. Iron Steel Inst., 1965, vol. 203, p. 123-30.

    Google Scholar 

  3. J. H. Swisher: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 123–24.

    Google Scholar 

  4. R. J. Fruehan: Metall. Trans., 1970, vol. 1, pp, 3403-10.

    Article  Google Scholar 

  5. L. E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165-74.

    Google Scholar 

  6. D. Janke and W. A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, 195-98.

    Google Scholar 

  7. V. E. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52-57.

    Google Scholar 

  8. H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381-88.

    Article  Google Scholar 

  9. S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66, pp. 3-7.

    Google Scholar 

  10. J. D. Seo, S.H. Kim, and K.R. Lee: Steel Res., 1998, vol. 69, pp. 49-53.

    Google Scholar 

  11. Y. J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483-89.

    Article  Google Scholar 

  12. G. R. St. Pierre: Metall. Trans. B, 1977, vol. 8B, pp. 215-7.

    Article  Google Scholar 

  13. H. Itoh, M. Hino, and S. Banya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773-78.

    Google Scholar 

  14. S. Gustafsson and P. O. Mellberg: Scand. J. Metallurgy, 1980, vol. 9, pp. 111-16.

    Google Scholar 

  15. D. Bouchard and C. W. Bale: J. Phase Equilib., 1995, vol. 16, pp. 16-23.

    Article  Google Scholar 

  16. I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  Google Scholar 

  17. J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um, and Y. W. Chang: Met. Mater. Int., 2014, vol. 20, pp. 41-47.

    Article  Google Scholar 

  18. B. H. Song, J. Kim, S. Jeong, I. Choi, and Y. K. Lee: Korean J. Met. Mater., 2014, vol. 52, pp. 1-9.

    Article  Google Scholar 

  19. J. H. Park, D. J. Kim, and D. J. Min: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2316-24.

    Article  Google Scholar 

  20. C. H. P. Lupis and J. F. Elliott: Acta Metall., 1966, vol. 14, 529-38.

    Article  Google Scholar 

  21. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, MA, 1952, pp. 47-51.

    Google Scholar 

  22. J. Chipman: The Physical Chemistry of Liquid Steel, in Basic Open-Hearth Steel Making, The American Institute of Mining and Metallurgical Engineers, New York, 1951.

    Google Scholar 

  23. M.K. Paek, J.J. Pak, and Y.-B. Kang: Metall. Mater. Trans. B, 2015. DOI:10.1007/s11663-015-0369-z.

  24. M.K. Paek, K.H. Do, Y.-B. Kang, I.H. Jung, and J.J. Pak: unpublished research.

  25. R. Inoue and H. Suito: Mater. Trans. JIM, 1991, vol. 32, pp. 1164-9.

    Article  Google Scholar 

  26. H. Yin: Proc. of Int. Conf. of AISTech 2005, vol. 2, Warrendale, PA, 2005, pp. 89–97.

  27. The 19th Committee in Steelmaking: Thermodynamic Data For Steelmaking, The Japan Society for Promotion of Science, Tohoku University Press, Sendai, Japan, 2010, pp. 10–13.

  28. L. S. Darken: Trans. AIME, 1967, vol. 239, pp. 80-89.

    Google Scholar 

  29. A. D. Pelton and C. W. Bale: Metall. Trans. A, 1986, vol. 17A, pp. 1211-5.

    Article  Google Scholar 

  30. J. R. Taylor, A. T. Dinsdale, M. Hillert, and M. Selleby: CALPHAD, 1992, vol. 16, pp. 173-9.

    Article  Google Scholar 

  31. A. D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869-76.

    Article  Google Scholar 

  32. A. D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-60.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the R&D Center for Valuable Recycling (Global-Top Environmental Technology Development Program) funded by the Ministry of Environment (Project No.: 11-C22-ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Jin Pak.

Additional information

Manuscript submitted November 19, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paek, MK., Jang, JM., Kang, YB. et al. Aluminum Deoxidation Equilibria in Liquid Iron: Part I. Experimental. Metall Mater Trans B 46, 1826–1836 (2015). https://doi.org/10.1007/s11663-015-0368-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0368-0

Keywords

Navigation