Stability Diagram of Mg-Al-O System Inclusions in Molten Steel

Abstract

In the current study, the stability diagrams of Mg-Al-O system in molten steel are calculated using two methods. After comparing the result of connecting iso-oxygen contours of different phases (iso-oxygen contours method) and calculating the border lines of different phases (border lines method), the former method is more accurate and popular. Particularly, the detailed calculation procedures and connection line principles of stability diagram are exhibited. The effects of interaction coefficient, temperature, and activity of oxides on the stability diagram are also discussed. With the currently reported method, stability diagrams of various inclusions in molten steel can be calculated to predict the formation of inclusions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, no. 3, pp. 271-91.

    Article  Google Scholar 

  2. 2.

    K. Sakata: ISIJ Int., 2006, vol. 46, no. 12, pp. 1795-9.

    Article  Google Scholar 

  3. 3.

    J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, no. 10, pp. 1333-46.

    Article  Google Scholar 

  4. 4.

    H. Todoroki, K. Mizuno, M. Noda, and T. Tohge: ISS Steelmaking Conf. Proc., 2001, pp. 331-41.

  5. 5.

    O. Goro, Y. Koji, T. Syuji, and S. Ken-ichi: ISIJ Int., 2000, vol. 40, no. 2, pp. 121-8.

    Article  Google Scholar 

  6. 6.

    J.H. Park and D. Kim: Metall. Mater. Trans. B, 2005, vol. 36, no. 4, pp. 495-502.

    Article  Google Scholar 

  7. 7.

    J.H. Park: Mater. Sci. Eng. A, 2008, vol. 472, nos. 1-2, pp. 43-51.

    Article  Google Scholar 

  8. 8.

    T. Nishi and K. Shinme: Tetsu-to-Hagané, 1998, vol. 84, no. 12, pp. 837-43.

    Google Scholar 

  9. 9.

    S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43, no. 4, pp. 731-50.

    Article  Google Scholar 

  10. 10.

    H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28 (5), pp. 953-6.

    Article  Google Scholar 

  11. 11.

    K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, no. 11, pp. 1059-66.

    Article  Google Scholar 

  12. 12.

    W.-G. Seo, W.-H. Han, J.-S. Kim, and J.J. Pak: ISIJ Int., 2003, vol. 43, no. 2, pp. 201-8.

    Article  Google Scholar 

  13. 13.

    J.H. Park: Metall. Mater. Trans. B, 2007, vol. 38, no. 4, pp. 657-63.

    Article  Google Scholar 

  14. 14.

    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2008, vol. 48, no. 7, pp. 885-90.

    Article  Google Scholar 

  15. 15.

    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2010, vol. 50, no. 1, pp. 95-104.

    Article  Google Scholar 

  16. 16.

    H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28, no. 6, pp. 1131-9.

    Article  Google Scholar 

  17. 17.

    I.-H. Jung, S.A. Decterov, and A.D. Pelton: ISIJ Int., 2004, vol. 44, no. 3, pp. 527-36.

    Article  Google Scholar 

  18. 18.

    H. Todoroki and K. Mizuno: ISIJ Int., 2004, vol. 44, no. 8, pp. 1350-7.

    Article  Google Scholar 

  19. 19.

    Q. Han: Proc. of 6th Int. Iron and Steel Cong., Tokyo, Japan, 1990, vol. 1, p. 166.

  20. 20.

    The Japan Society for the Promotion of Science: Steelmaking Data Sourcebook, Gordon and Breach Science, New York, NY, 1988.

    Google Scholar 

  21. 21.

    R.J. Fruehan: Metall. Trans., 1970, vol. 1, p. 3403.

    Article  Google Scholar 

  22. 22.

    H. Schenck, E. Steinmetz, and K.K. Mehta: Arch. Eisenhüttenwes., 1970, vol. 41, p. 131-8.

    Google Scholar 

  23. 23.

    L.E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165-7.

    Google Scholar 

  24. 24.

    D. Janke and W.A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 41, p. 195-8.

    Google Scholar 

  25. 25.

    N.S. Jacobson and G.M. Mehrotra: Metall. Trans. B, 1993, vol. 24B, pp. 484-6.

    Google Scholar 

  26. 26.

    A. Hayashi, T. Uenishi, H. Kandori, T. Miki, and M. Hino: ISIJ Int., 2008, vol. 48, no. 11, pp. 1533-41.

    Article  Google Scholar 

  27. 27.

    Y. Kang, M. Thunman, S. Du, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, no. 10, pp. 1483-9.

    Article  Google Scholar 

  28. 28.

    Q. Han, X. Zhang, D. Chen, and P. Wang: Metall. Trans. B, 1988, vol. 19, no. 4, pp. 617-22.

    Article  Google Scholar 

  29. 29.

    R. Inoue and H. Suito: Metall. Mater. Trans. B, 1994, vol. 25, no. 2, pp. 235-44.

    Article  Google Scholar 

  30. 30.

    J.D. Seo and S.H. Kim: Steel Res. Int., 2000, vol. 71, no. 4, pp. 101-6.

    Google Scholar 

  31. 31.

    O. Knacke, O. Kubaschewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, vol. 2, 2nd ed., Springer-Verlag, Berlin, Germany, 1991, p. 1171.

    Google Scholar 

  32. 32.

    N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Calcium Modification of Spinel Inclusions in Aluminum-Killed Steel: Reaction Steps, vol. 43, Springer, Boston, MA, 2012, pp. 830-40.

    Google Scholar 

  33. 33.

    H. Ono, K. Nakajima, R. Maruo, S. Agawa, and T. Usui: ISIJ Int., 2009, vol. 49, no. 7, pp. 957-64.

    Article  Google Scholar 

  34. 34.

    J. Feng, Y. Bao, and H. Cui: Special Steel, 2010, vol. 31, no. 6, pp. 16-9.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Nos. 51274034, 51334002, and 51404019), State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Ren.

Additional information

Manuscript submitted January 25, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ren, Y., Duan, H. et al. Stability Diagram of Mg-Al-O System Inclusions in Molten Steel. Metall Mater Trans B 46, 1809–1825 (2015). https://doi.org/10.1007/s11663-015-0361-7

Download citation

Keywords

  • Al2O3
  • Activity Coefficient
  • Molten Steel
  • Interaction Coefficient
  • Stability Diagram