Skip to main content
Log in

Model of Gas Flow Through Porous Refractory Applied to an Upper Tundish Nozzle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Argon gas commonly is injected into the liquid metal stream through the porous refractory walls in many metallurgical processes. In this work, a new model has been developed to investigate gas diffusion through heated porous refractory, including the effects of refractory geometry, the thermal expansion of the gas, temperature-dependent gas viscosity, and possible leakage into unsealed joints. A novel one-way-flow pressure boundary condition has been formulated and implemented to prevent unrealistic flow into the refractory. The complete model is validated with both analytical solutions of 1D test problems and observations of a water bubbling experiment. Then, to demonstrate practical application of this general model, argon gas flow is simulated through a double-slitted upper tundish nozzle during continuous steel casting with a slide-gate system. Realistic liquid steel pressure distributions with the bubbling threshold condition are applied on the inner surface. Parametric studies are conducted to investigate the effects of joint gas leakage, refractory conductivity, permeability, and injection pressure on the resulting gas distributions, gas mass flow rates, and leakage fraction. This new model of porous flow can serve as the first step of a comprehensive multiphase model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. B.G. Thomas: Making, Shaping and Treating of Steel, A. Cramb, ed., 11th edition, vol. 5, Casting Volume, The AISE Steel Foundation, Pittsburgh, PA, 2003, pp. 1–24.

  2. D. Hershey, B.G. Thomas and F.M. Najjar: “Turbulent Flow through Bifurcated Nozzles”, International Journal for Numerical Methods in Fluids, 1993, vol. 17 (1), pp. 23-47.

    Article  Google Scholar 

  3. Y. Xie, S. Orsten and F. Oeters: “Behavior of Bubbles at Gas Blowing into Liquid Wood’s Metal”, ISIJ International, 1992, vol. 32(1), pp. 66-75.

    Article  Google Scholar 

  4. S.T. Johansen, F. Boysan and W.H. Ayers: “Mathematical modelling of bubble driven flows in metallurgical processes”, Applied Scientific Research, 1987, vol. 44, pp. 197-207.

    Article  Google Scholar 

  5. D. Mazumdar and R.I.L. Guthrie: “The Physical and Mathematical Modelling of Gas Stirred Ladle System”, ISIJ International, 1995, vol. 35(1), pp. 1-20.

    Article  Google Scholar 

  6. B. Li, H. Yin, C.Q. Zhou and F. Tsukihashi: “Modeling of three-phase flows and behavior of slag/steel interface in an argon gas stirred ladle”, ISIJ International, 2008, vol. 48(12), pp. 1704-1711.

    Article  Google Scholar 

  7. L. Wang, H. Lee and P. Hayes: “A new approach to molten steel refining using fine gas bubbles”, ISIJ International, 1996, vol. 36(1), pp. 17-24.

    Article  Google Scholar 

  8. A. Vargas-Zamora, R.D. Morales, M. Diaz-Cruz, J. Palafox-Ramos, and J.DE J. Barreto-Sandoval: Metall. Mater. Trans. B., 2004, vol. 35B, pp. 247–57.

    Article  Google Scholar 

  9. H. Bai and B.G. Thomas: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 253–67.

  10. X. Huang and B.G. Thomas: “Modeling of Transient Flow Phenomena in Continuous Casting of Steel”, Canadian Metallurgical Quarterly, 1998, vol. 37(304), pp. 197-212.

    Article  Google Scholar 

  11. T. Shi and B.G. Thomas: Continuous Casting Consortium at University of Illinois at Urbana-Champaign, Report, 2001.

  12. H. Yu and M. Zhu: “Numerical Simulation of the Effects of Electromagnetic Brake and Argon Gas Injection on the Three-dimensional Multiphase Flow and Heat Transfer in Slab Continuous Casting Mold”, ISIJ International, 2008, vol. 48(5), pp. 584–591.

    Article  Google Scholar 

  13. V. Singh, S.K. Dash, J.S. Sunitha: “Experimental Simulation and Mathematical Modeling of Air Bubble Movement in Slab Caster Mold”, 2006, ISIJ International, vol. 46(2), pp. 210-218.

    Article  Google Scholar 

  14. B.G. Thomas, X. Huang, and R.C. Sussman: “Simulation of Argon Gas Flow Effects in a Continuous Slab Caster”, Metallurgical and Materials Trans. B, 1994, vol. 25B, pp. 527-547.

    Article  Google Scholar 

  15. R. Gass: Personal Communication, Inland Steel, 1998.

  16. M. Iguchi, Y. Demoto, N. Sugawara and Z. Morita: “Bubble Behavior in Hg-Air Vertical Bubbling Jets in a Cylindrical Vessel”, ISIJ International, 1992, vol. 32(9), pp. 998-1005.

    Article  Google Scholar 

  17. M. Iguchi, H. Kawabata, K. Nakajima and Z. Morita: “Measurements of bubble characteristics in a molten iron bath at 1600  °C using an electroresistivity probe”, Metallurgical and Materials Trans. B., 1995, vol. 26B, pp. 67-74.

    Article  Google Scholar 

  18. H. Bai and B.G. Thomas: “Bubble Formation during Horizontal Gas Injection into Downward Flowing Liquid”, Metallurgical and Materials Trans. B, 2001, vol. 32B, pp. 1143-1159.

    Article  Google Scholar 

  19. S. Ghaemi, P. Rahimi, and D. Nobes: Physics of Fluids, 2010, vol. 22, pp. 043305 1-15.

    Article  Google Scholar 

  20. N.A. Kazakis, A.A. Mouza and S.V. Paras: “Initial bubble size through a sparger Experimental study of bubble formation at metal porous spargers: Effect of liquid properties and sparger characteristics on the initial bubble size distribution”, Chemical Engineering Journal, 2008, vol. 137, pp. 265-281.

    Article  Google Scholar 

  21. G. Houghton, A.M. McLean, and P.D. Ritchie: “Mechanism of formation of gas bubble-beds”, Chemical Engineering Science, 1957, vol. 7 (1–2), pp. 40–50.

    Article  Google Scholar 

  22. B. Bowonder and R. Kumar: “Studies in bubble formation – IV: bubble formation at porous discs”, Chemical Engineering Science, 1970, vol. 25, pp. 25-32.

    Article  Google Scholar 

  23. G. Lee, B.G. Thomas and S. Kim: “Effect of Refractory Properties on Initial Bubble Formation in Continuous-casting Nozzles”, Metal and Materials International, 2010, vol. 16(3), pp. 501-506.

    Article  Google Scholar 

  24. FLUENT ANSYS Inc. 2007 FLUENT 6.3-Manual (Lebanon, NH).

  25. S. Whitaker: “The Forchheimer equation: a theoretical development”, Transport in Porous Media, 1996, vol. 25, pp. 27-61.

    Article  Google Scholar 

  26. S. Ergun: “Fluid flow through packed columns”, Chemical Engineering Process, 1952, vol. 48(2), pp. 89-94.

    Google Scholar 

  27. Y. Lee: ArcelorMittal Inc. Global R&D, Personal Communication, 2011.

  28. G.M. DÄRR, U. Ludwig: “Determination of permeable porosity”, MATÉRIAUX ET CONSTRUCTIONS, 1973, vol. 6(33), pp. 185-190.

    Article  Google Scholar 

  29. R.E. Collins: in Flow of Fluids Through Porous Materials, C.R. Wilke, ed., Reinhold, Chapman & Hall, London, 1961.

  30. G.H. Fancheark and J.A. Lewis: “Flow of simple fluids through porous refractory”, Industrial and Engineering Chemistry, 1933, vol. 25(10), pp. 1139-1147.

    Article  Google Scholar 

  31. C.A. Sleicher and M.W. Rouse: “A Convenient Correlation for Heat Transfer to Constant and Variable Property Fluids in Turbulent Pipe Flow”, International Journal of Heat and Mass Transfer, 1975, vol.18, pp. 677-683.

    Article  Google Scholar 

  32. P. Wesseling: Principles of Computational Fluid Dynamics, Springer, Berlin, 2001. ISBN 7-03-016677-9, pp. 62.

  33. T. Young: “An essay on the cohesion of fluids”, Philosophical Transactions of the Royal Society of London, 1805, vol.95, pp.65-87.

    Article  Google Scholar 

  34. G. Kaptay, T. Matrushita, K. Mukai and T. Ohuchi: “On different modifications of the capillary model of penetration of inert liquid metals into porous refractories and their connection to the pore size distribution of the refractories”, Metallurgical and Materials Transaction B., 2004, vol. 35B, pp. 471-486.

    Article  Google Scholar 

  35. L. Jimbo, A. Sharan, and A.W. Cramb: 76th Steelmak. Conf. Prof., Dallas, TX, 1993, pp. 485–94.

  36. R. Dawe and E. Smith: “Viscosity of Argon at High Temperatures”, Science, 1969, vol. 163, pp. 675-676.

    Article  Google Scholar 

  37. R. Nunnington: LWB Refractories, Personal Communication, November 6, 2006.

  38. B. van Leer: “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’s Method”, J. Com. Phys., 1997, vol. 135(2), pp. 229–248.

    Article  Google Scholar 

  39. S.V. Patankar: “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corporation, Washington D.C., 1980.

    Google Scholar 

  40. S.R. Mathur and J.Y. Murthy: “A Pressure-based Method for Unstructured Meshes”, Numerical Heat Transfer, Part B: Fundamentals, 1997, vol. 31(2), pp.195-215.

    Article  Google Scholar 

  41. S. Achaya, B.R. Baliga, K. Karki, J.Y. Murthy, C. Prakash, and S.P. Vanka: “Pressure-based Finite-Volume Methods in Computational Fluid Dynamics”, Journal of Heat Transfer, 1996, vol. 129(7), pp. 407-424.

    Google Scholar 

  42. R. Liu and B.G. Thomas: Proc. AISTech 2012 Steelmak. Conf., Atlanta, GA, 2012, pp. 2235–46.

  43. M. Burty, M. Larrecq, C. Pusse, and Y. Zbaczyniak: “Experimental and Theoretical Analysis of Gas and Metal Flows in Submerged Entry Nozzles in Continuous Casting”, Revue de Metallurgie. Cahiers D’Informations Techniques, 1996, vol. 93(10), pp. 287-292.

    Google Scholar 

  44. J. Sengupta and S.D. Chung: Proc. AISTech 2014 Steelmak. Conf., Indianapolis, IN, 2014, pp. 1857–64.

Download references

Acknowledgments

This work was supported by the Continuous Casting Consortium at the University of Illinois. The authors would like to thank Dr. J. Sengupta at ArcelorMittal Dofasco, Dr. H. Yin, and B. Forman at ArcelorMittal Global R&D in East Chicago for their help with the static water bubbling test. The authors also express gratitude to R. Nunnington at Magnesita Refractories for providing data for the parametric studies, and for helpful discussions. Most of all, we thank former graduate student, Zaher Hashisho, now at the University of Alberta, Canada, for initial work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted February 11, 2014.

Appendix A. Analytical Solution for 1D Test Problem

Appendix A. Analytical Solution for 1D Test Problem

The one-way coupled heat conduction and pressure-source Eqs. [2] and [9] simplify into two ODEs, expressed in cylindrical coordinates as Eqs. [A1] and [A4]. The heat conduction equation,

$$ \frac{1}{r}\left( {rT^{\prime}} \right)^{\prime } = 0, $$
(A1)

has the general solution,

$$ T = C_{1} \ln r + C_{2} . $$
(A2)

The two integration constants, C 1 and C 2, are determined from the fixed temperature boundary conditions at the inner (T 1) and outer radius (T 2):

$$ C_{1} = \frac{{T_{2} - T_{1} }}{{\ln \left( {R_{2} /R_{1} } \right)}}\quad {\text{and}}\quad C_{2} = \frac{{T_{1} \ln R_{2} - T_{2} \ln R_{1} }}{{\ln \left( {R_{2} /R_{1} } \right)}}. $$
(A3)

The 1D gas pressure equation can be expressed as:

$$ p^{\prime\prime} + \left( {\frac{1}{r} - \frac{{T^{\prime}}}{T} + \frac{{K^{\prime}_{\text{D}} }}{{K_{\text{D}} }}} \right)p^{\prime} + \frac{{p^{'2} }}{p} = 0. $$
(A4)

Equation [A4] was discretized using a central finite-difference scheme and solved with a tri-diagonal matrix algorithm (TDMA), on a 200-node mesh.[42] Equation [A4] can be solved analytically for two special cases: (1) with gas thermal expansion but constant gas viscosity; and (2) without any thermal effects.

With Thermal Expansion and Constant Gas Viscosity

With constant gas viscosity, the Equation [A4] simplifies to:

$$ pp^{\prime\prime} + p^{'2} + pp^{\prime}\left( {\frac{1}{r} - \frac{{T^{\prime}}}{T}} \right) = 0 $$
(A5)

which has the following positive general solution:

$$ p = \sqrt {\frac{{C_{3} }}{{C_{1} }}\left( {C_{1} \ln r + C_{2} } \right)^{2} + 2C_{4} } . $$
(A6)

Applying Eq. [8] gives the corresponding gas velocity:

$$ V_{\text{r}} = - \frac{{K_{\text{D}} \sqrt {C_{1} C_{3} } \left( {C_{1} \ln r + C_{2} } \right)}}{{r\sqrt {\left( {C_{1} \ln r + C_{2} } \right)^{2} + \frac{{2C_{1} C_{4} }}{{C_{3} }}} }}, $$
(A7)

where integration constants C 1 and C 2 are given in Eq. [A3]. Inserting the fixed pressure boundary conditions, at the inner (P 1) and outer radius (P 2) gives:

$$ C_{3} = \frac{{P_{2}^{2} - P_{1}^{2} }}{{T_{2}^{2} - T_{1}^{2} }}C_{1} \;{\text{and}}\;C_{4} = \frac{{P_{1}^{2} T_{2}^{2} - P_{2}^{2} T_{1}^{2} }}{{2\left( {T_{2}^{2} - T_{1}^{2} } \right)}}. $$
(A8)

No Thermal Effects

The simplest scenario ignores both temperature-dependent gas viscosity and gas expansion. Assuming constant viscosity and temperature simplifies Eq. [A4] into:

$$ p^{\prime\prime} + \frac{{p^{\prime}}}{r} = 0 $$
(A9)

which has the pressure solution:

$$ p = C_{3} \ln r + C_{4} , $$
(A10)

where,

$$ C_{3} = \frac{{P_{2} - P_{1} }}{{\ln \left( {R_{2} /R_{1} } \right)}}\;{\text{and}}\;C_{4} = \frac{{P_{1} \ln R_{2} - P_{2} \ln R_{1} }}{{\ln \left( {R_{2} /R_{1} } \right)}}. $$
(A11)

The corresponding gas velocity distribution is: \( V_{\text{r}} = - K_{\text{D}} \frac{{C_{3} }}{r} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Thomas, B.G. Model of Gas Flow Through Porous Refractory Applied to an Upper Tundish Nozzle. Metall Mater Trans B 46, 388–405 (2015). https://doi.org/10.1007/s11663-014-0198-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0198-5

Keywords

Navigation