Skip to main content
Log in

Numerical Simulation of Solidification and Prediction of Mechanical Properties in Magnesium Alloy Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this paper, a volume-averaged numerical formulation combined with experimentally derived correlations is used to predict the local cooling rate, grain size (GS), and yield strength of a wedge-shaped magnesium casting. The predicted cooling rates and experimental correlations are used to predict the local GS. To predict the average yield strength, the GS and thickness of the skin and core regions are taken into account. Results are shown to be in good accordance with previously reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Active coefficient in discretized equation

A :

Area, m2

b :

Body force

\( C_{{{\text{p}}_{k} }} \) :

Specific heat of constituent k, J/Kg k

d :

Grain size in Hall–Petch equation

f k :

Volume fraction of constituent k

\( \vec{g} \) :

Gravity vector

h k :

Sensible enthalpy of constituent k

k :

Hall–Petch slope on a plot of true stress, σ, vs d 1/2

k k :

Thermal conductivity of constituent k, W/m K

k P :

Partition coefficient

L ls :

Latent heat of fusion, kJ/kg

m :

Iteration number

\( \dot{m} \) :

Mass flux, kg/s

\( \hat{n} \) :

Unit normal vector

P k :

Pressure

R :

Cooling rate

t :

Time, s

t s :

Local solidification time, s

T ref :

Reference temperature, K (°C)

T k :

Temperature of constituent, K (°C)

T mlt :

Melting temperature of alloy, K (°C)

T sol :

Solidus temperature of alloy, K (°C)

T Eut :

Eutectic temperature of alloy, K (°C)

T liq :

Liquidus temperature of alloy, K (°C)

\( \hat{\vec{v}} \) :

Advecting velocity, m/s

V k :

Volume of constituent in REV

V :

Volume of REV

\( \vec{x} \) :

Position vector

〈〉:

Denotes extrinsic volume average

〈〉k :

Denotes intrinsic volume average with respect to constituent k

β :

Volumetric thermal expansion, k−1

μ :

Dynamic viscosity, kg/ms

∂ Ω P :

Denotes a surface bounding a control volume

Ω P :

Denotes the dimension of a control volume

δ t :

Skin thickness fraction

φ k :

Generic field variable for constituent k

σ :

Yield or flow strength

ρ k :

Density of constituent, kg/m3

σ 0 :

Intercept stress

κ :

Morphology factor

k :

K ∈ {l(liquid), s(solid), m(mixture)}

P :

Quantity evaluated at or associated with a particular control volume

ip:

Quantity evaluated at or associated with an integration point

nb:

Quantity evaluated at or associated with a neighboring control volume

References

  1. M. Farrokhnejad, A.G. Straatman, J.T. Wood, Numer. Heat Transfer, Part A, 2014, vol.65, pp. 750–779.

    Article  Google Scholar 

  2. R.N. Hills, D.E. Loper, and P.H. Roberts: Q. J. Mech. Appl. Math., 1983, vol. 36, pp. 505–38.

    Article  Google Scholar 

  3. V.C. Prantil and P.R.Dawson: in Transport Phenomena in Materials Processing, M.M. Chen, J. Mazumder, and C.L. Tucker III, eds., ASME, New York, 1983, pp. 469–84.

  4. W.D. Bennon and F.P. Incroperra, Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2171-2187.

    Article  Google Scholar 

  5. J. Ni and C. Beckermann, Metall. Trans. B, 1991, vol. 22B, pp. 349-361.

    Article  Google Scholar 

  6. C. Beckermann and R. Viskanta, Appl. Mech. Rev. 1993, vol. 46, pp. 1-27.

    Article  Google Scholar 

  7. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, 1980, Hemisphere, New York.

    Google Scholar 

  8. W.G. Gray, Chem. Eng. Sci. 1975, vol. 30, pp. 229-233.

    Article  Google Scholar 

  9. M. Hassanizadeh and W.G. Gray, Adv. Water Resour. 1979, vol. 2, pp. 131-144.

    Article  Google Scholar 

  10. S. Whitaker: in Fluid Transport in Porous Media, vol. 13, P.D. Plessis, ed., Computational Mechanics Publications, Southhampton, 1997.

  11. P.J. Prescott, F.P. Incropera and W.D. Bennon, International Journal of Heat and Mass Transfer, vol. 34(9), pp. 2351-2359, 1991.

    Article  Google Scholar 

  12. V.R. Voller, A.D. Brent, and C. Prakash: Int. J. Heat Mass Transf., 1989, vol. 32(9), pp. 1719–31.

    Article  Google Scholar 

  13. V.R. Voller and C.R. Swaminathan, Numer. Heat Transfer, Part B, 1991,vol. 19, pp. 175-189.

    Article  Google Scholar 

  14. C.R. Swaminathan and V.R. Voller, Metall. Trans. B, 1992, vol. 23B, pp. 651-664.

    Article  Google Scholar 

  15. N. Zabaras and D. Samantha, Int. J. Numer. Methods Eng. 2004, vol. 6, (5), pp. 1-38.

    Google Scholar 

  16. S. Ganesan and D.R. Poirier, J. Cryst. Growth, 1989, vol. 97(3-4), pp. 851-859.

    Article  Google Scholar 

  17. V.R. Voller and C. Prakash, Int. J. Heat Mass Transfer 1987, vol. 30, (8), pp. 1709-1719.

    Article  Google Scholar 

  18. C. Beckermann and R. Viskanta: Physicochem. Hydrodyn. 1988, vol. 10(2), pp. 195–213.

    Google Scholar 

  19. J. S. Hsiao, Numer. Heat Transfer. 1985, vol. 8, pp. 653-666.

    Article  Google Scholar 

  20. D. Celentano, M. Cruchaga, N. Moraga, and J. Fuented, Numer. Heat Transfer, Part A, 2001, vol. 39, pp. 631-654.

    Article  Google Scholar 

  21. V.R. Voller, C.R. Swaminathan and B.G. Thomas, Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 875-898.

    Article  Google Scholar 

  22. E.O. Hall, Proc. Phys. Soc., 1951, vol.64B, pp. 747-753.

    Article  Google Scholar 

  23. N.J. Petch, J. Iron Steel Inst., 1953, vol.174, p. 25.

    Google Scholar 

  24. D.J. Lloyd and S.A. Court, Mater. Sci. Technol. 2003, vol.19, pp. 1349-1354.

    Article  Google Scholar 

  25. M.S. Dargusch, K. Pettersen, K. Nogita, M.D. Nave, and G.L. Dunlop, Mater. Trans. 2006, vol. 47 pp. 977-982.

    Article  Google Scholar 

  26. P. Andersson, C.H. Caceres, and J. Koike: Mater. Sci. Forum. 2003, vol. 419, pp. 123–128.

    Article  Google Scholar 

  27. J.P. Weiler: Ph.D. Thesis, The University of Western Ontario, London, ON, 2009.

  28. T.M. Yue, H.U. Ha, and N.J. Musson, J. Mater. Sci. 1995, vol.30 pp. 2277-2283.

    Article  Google Scholar 

  29. F.E. Hauser, P.R. Landon, and J.E. Dorn, Trans. Am. Inst. Min., Metall. Pet. Eng. 1956, vol. 206, pp. 589-593.

    Google Scholar 

  30. J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel and G. Wang, Mater. Sci. Eng., A. 2006, vol. 419(1), pp. 297-305.

    Article  Google Scholar 

  31. G. Mima, and Y. Tanaka, J. Jpn. Inst. Met. 1971, vol. 35, pp. 317-322.

    Article  Google Scholar 

  32. J.P. Weiler: M.E.Sc. Thesis, The University of Western Ontario, London, ON, 2005.

  33. W.P. Sequeira, G.L. Dunlop, and M.T. Murray: Proceedings of the 3rd International Magnesium Conference, G.W. Lorimer, ed., The Institute of Metals, Manchester, 1996, pp. 63–73.

  34. D. Yin: Microstructural Characterization of a Magnesium Die-Casting, The University of Western Ontario, London, ON, 2004.

    Google Scholar 

  35. A.L. Bowles, J.R. Griffiths, and C.J. Davidson: in Magnesium Technology, J. Hryn, ed., TMS, Warrendale, 2001, pp. 161–68.

  36. Y. Unigovski, E. Gutman, A. Eliezer, L. Riber, and Z. Koren: Proceedings of the 2nd Israeli International Conference on Magnesium Science and Technology, E. Aghion and D. Eliezer, eds., 2000, pp. 105–11.

  37. I. Basu: M.E.Sc. Thesis, The University of Western Ontario, London, ON, 2011.

  38. N.H. Pryds and X. Huang, Metall. Mater. Trans. A, 2000, vol.31A, pp. 3155-3166.

    Article  Google Scholar 

  39. Reed-Hill, Robert E., and Reza Abbaschian. Physical metallurgy principles, 1964, Princeton, Van Nostrand.

    Google Scholar 

  40. A. Banarje: M.E.Sc. Thesis, The University of Western Ontario, London, ON, 2013.

  41. C. M. Rhie and W.L. Chow, Am. Inst. Aeronautics and Astronautics J. 1983, vol.21 pp. 1525-1532.

    Article  Google Scholar 

  42. PK. Kholsa and SG. Rubin, Comput. Fluids. 1974, vol.2, pp. 207-209.

    Article  Google Scholar 

  43. L. Betchen, A. Straatman, Int. J. Numer. Methods Fluids. 2009, vol.62, pp. 945-962.

    Google Scholar 

  44. M. Farrokhnejad, A.G. Straatman, and J. Wood: ASME International Manufacturing Science and Engineering, West Lafayette, IN, 2009, pp. 427–36.

  45. M. Farrokhnejad and A.G. Straatman: 9th International Conference on Mg Alloys & Their Applications, Vancouver, 2012.

  46. M.Farrokhnejad, A.G. Straatman, J.T.Wood, Mater. Sci. Forum. 2013, vol.765, pp. 281-285.

    Article  Google Scholar 

  47. C.J. Vreeman and F.P. Incropera, Int. J. Heat Mass Transfer. 2000, vol.43, pp. 687-704.

    Article  Google Scholar 

  48. M. Trovant and S. Argyropoulos, Metall. Mater. Trans. B. 2000, vol. 31B, pp. 75-86.

    Article  Google Scholar 

  49. Y. He, A. Javaid, E. Essadiqi and M. Shehata, Cnd. Metall. Q. 2009, vol.48 pp. 145-156.

    Article  Google Scholar 

  50. D.R. Poirier: Metall. Trans. B., 1987, vol. 18B, pp. 245–56.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Meridian Lightweight Technologies Inc. and the AUTO21 Network of Centres of Excellence for funding this project and SHARCNET for facilitating their computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Farrokhnejad.

Additional information

Manuscript submitted July 25, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhnejad, M., Straatman, A.G. & Wood, J.T. Numerical Simulation of Solidification and Prediction of Mechanical Properties in Magnesium Alloy Casting. Metall Mater Trans B 45, 2357–2369 (2014). https://doi.org/10.1007/s11663-014-0131-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0131-y

Keywords

Navigation