Skip to main content
Log in

The effect of cooling rate on the microstructures formed during solidification of ferritic steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article describes in detail the effect of cooling rate on the microstructure of a low-carbon Fe-12 pct Cr alloy. The alloy was prepared using a relatively simple technique, i.e., rapid cooling of the melt in a copper wedge mold. The dependence of microstructure on the cooling rate (∼40 to 105 K/s) has been determined by X-ray diffraction (XRD), microhardness measurement, optical microscopy (OM), and transmission electron microscopy (TEM). It has been found that the matrix structure over a large cooling rate range is composed of columnar ferrite grains, the size of which decreases with increasing cooling rate. Precipitation of second phases has been observed at either the ferrite grain boundaries or within the ferrite grains. The former takes place along the entire wedge sample, whereas the latter characterizes a region 12 mm away from the tip of the wedge sample. The essential structure of the grain boundary precipitates was identified as martensite, which is a transformation product of austenite precipitated at high temperatures. Retained austenite was identified at the tip region as isolated particles (<4 µm). The precipitates within the ferrite grains appeared as planar colonies consisting of two sets of needles. The density of these precipitates increases with increasing the cooling rate while their size decreases. Characteristic precipitate-free zones (PFZs) at the ferrite grain boundaries were observed and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Little, D.R. Harries, F.B. Pickering, and S.R. Keown: Met. Technol., 1977, vol. 4, p. 205.

    Google Scholar 

  2. D.J. Gooch: Met. Sci., 1982, vol. 16, p. 79.

    Article  Google Scholar 

  3. R.R. Petri, E. Schnabel, and P. Schwaab: Arch. Eisenhüttenwes., 1980, vol. 51, p. 335.

    Google Scholar 

  4. R.R. Petri, E. Schnabel, and P. Schwaab: Arch. Eisenhüttenwes., 1981, vol. 52, p. 27.

    CAS  Google Scholar 

  5. C.A. Dubé, H.I. Aaronson, and R.F. Mehl: Rev. Métall., 1958, vol. 55, p. 201.

    Google Scholar 

  6. H.I. Aaronson: in The Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, p. 387.

    Google Scholar 

  7. M.V. Kral and G. Spanos: Acta Mater., 1999, vol. 47, p. 711.

    Article  CAS  Google Scholar 

  8. R.K.W. Honeycombe: Steel: Microstructure and Properties, Edward Arnold, London, 1981.

    Google Scholar 

  9. J.V. Wood and R.W.K. Honeycombe: Phil. Mag. A, 1978, vol. 37, p. 501.

    CAS  Google Scholar 

  10. C.N. Elliot, H.A. Davies, and G.W. Greenwood: Mater. Sci. Eng., 1988, vol. 98, p. 285.

    Article  CAS  Google Scholar 

  11. K. Ozbaysal and O.T. Inal: Mater. Sci. Eng. A, 1990, vol. 130, p. 205.

    Article  Google Scholar 

  12. N.H. Pryds: Ph.D. Thesis, Risø National Laboratory, Roskilde, Denmark, Mar. 1997.

    Google Scholar 

  13. N.H. Pryds, E. Johnson, S. Linderoth, and A.S. Pedersen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 367–76.

    CAS  Google Scholar 

  14. N.H. Pryds, T. Juhl, and A.S. Pedersen: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1817–26.

    CAS  Google Scholar 

  15. X. Huang and N.H. Pryds: Acta Mater, in press.

  16. D.R. Barraclough and D.J. Gooch: Mater. Sci. Technol., 1985, vol. 1, p. 961.

    CAS  Google Scholar 

  17. K. Ameyama, T. Maki, and I. Tamura: J. Jpn Inst. Met., 1986, vol. 50, p. 10.

    CAS  Google Scholar 

  18. N.H. Pryds and X. Huang: Scripta Mater., 1997, vol. 36, p. 1219.

    Article  CAS  Google Scholar 

  19. G. Thewlis: Mater. Sci. Technol., 1994, vol. 110.

  20. H.I. Aaronson, G. Spanos, R.A. Masamura, R.G. Vardiman, D.W. Moon, E.S.K. Menon, and M.G. Hall: Mater. Sci. Eng., 1995, vol. B32, pp. 107–23.

    Article  CAS  Google Scholar 

  21. G. Spanos and M.G. Hall: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1517–23.

    Google Scholar 

  22. K.E. Easterling and H.M. Miekk-Oja: Acta Metall., 1967, vol. 15, p. 1133.

    Article  CAS  Google Scholar 

  23. K.E. Easterling and G.C. Weatherly: Acta Metall., 1969, vol. 17, p. 845.

    Article  CAS  Google Scholar 

  24. M. Lin, G.B. Olson, and M. Cohen: Acta Metall. Mater., 1993, vol. 41, p. 253.

    Article  CAS  Google Scholar 

  25. T. Tadaki, Y. Murai, A. Koreeda, Y. Nakata, and Y. Hirotsu: Mater. Sci. Eng. A, 1996, vol. 217–218, p. 235.

    Google Scholar 

  26. R.E. Cech and D. Turnbull: Trans. AIME, 1956, vol. 206, p. 124.

    Google Scholar 

  27. A.L. Schaeffler: Met. Progr., 1949, vol. 56, pp. 680 and 680B.

    CAS  Google Scholar 

  28. J. Zboril and Z. Posedel: Z. Metallkd., 1970, vol. 61, p. 214.

    CAS  Google Scholar 

  29. R. Maldonado and E. Nembach: Acta Mater., 1997, vol. 45, p. 213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pryds, N.H., Huang, X. The effect of cooling rate on the microstructures formed during solidification of ferritic steel. Metall Mater Trans A 31, 3155–3166 (2000). https://doi.org/10.1007/s11661-000-0095-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0095-1

Keywords

Navigation