Skip to main content
Log in

A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 30 October 2014

Abstract

Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 10K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10–4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.J. Stueber, T. Milidantri, and M. Tadayon: Chromalloy Gas Turbine Corporation, 1994, p. 8.

  2. J.J. Marcin, Jr., J.A. Neutra, D.H. Abbott, J.P. Aduskevich, D.M Shah, D.N. Carraway, R.P. Langevin, M.R. Sauerhoefer, and R.A. Stone: United technologies Corporation, 2001, p. 19.

  3. M. Gaumann: EPFL Lausanne, Lausanne, 1999, p 117.

  4. A. Mortensen and S. Suresh: Functionally graded metals and metal-ceramic composites: Part 1 processing. Maney, London, ROYAUME-UNI, 1995.

    Google Scholar 

  5. Weiping Liu and J. N. DuPont: Acta Materialia 2004, vol. 52, pp. 4833-4847.

    Google Scholar 

  6. M. Gäumann, S. Henry, F. Cléton, J. D. Wagnière and W. Kurz: Materials Science and Engineering: A 1999, vol. 271, pp. 232-241.

    Article  Google Scholar 

  7. T. D. Anderson, J. N. DuPont and T. DebRoy: Acta Materialia 2010, vol. 58, pp. 1441-1454.

    Article  Google Scholar 

  8. S. Mokadem: EPFL Lausanne, Lausanne, 2004, p. 214.

  9. S. Mokadem, C. Bezençon, A. Hauert, A. Jacot and W. Kurz: Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1500-1510.

    Article  Google Scholar 

  10. M. Gäumann, C. Bezençon, P. Canalis and W. Kurz: Acta Materialia 2001, vol. 49, pp. 1051-1062.

    Article  Google Scholar 

  11. T. H. C. Childs, C. Hauser and M. Badrossamay: CIRP Annals - Manufacturing Technology 2004, vol. 53, pp. 191-194.

    Article  Google Scholar 

  12. T. H. Childs and A. Tontowi: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2001, vol. 215, pp. 1481-1495.

    Article  Google Scholar 

  13. C. Hauser and T. H. C. Childs: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2005, vol. 219, pp. 379-384.

    Article  Google Scholar 

  14. W. Zhang, C. H. Kim and T. DebRoy: Journal of Applied Physics 2004, vol. 95, pp. 5210-5219.

    Article  Google Scholar 

  15. K. Mundra, T. DebRoy and K. M. Kelkar: Numerical Heat Transfer, Part A: Applications 1996, vol. 29, pp. 115-129.

    Article  Google Scholar 

  16. M Picasso and AFA Hoadley: International Journal of Numerical Methods for Heat & Fluid Flow 1994, vol. 4, pp. 61-83.

    Article  Google Scholar 

  17. D. V. Bedenko and O. B. Kovalev, Thermophys. Aeromech. 2013, vol. 20, pp. 251-261.

    Article  Google Scholar 

  18. Z. Liu and H. Qi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1903–1915.

    Article  Google Scholar 

  19. Jyotirmoy Mazumder, Optical Engineering 1991, vol. 30, pp. 1208-1219.

    Article  Google Scholar 

  20. C. L. Chan, J. Mazumder and M. M. Chen, Journal of Applied Physics 1988, vol. 64, p. 6166.

    Article  Google Scholar 

  21. L. X. Yang, X. F. Peng and B. X. Wang, International Journal of Heat and Mass Transfer 2001, vol. 44, pp. 4465-4473.

    Article  Google Scholar 

  22. M. Rappaz and Ch. A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–360.

    Article  Google Scholar 

  23. Weiping Liu and J. N. DuPont: Acta Materialia 2005, vol. 53, pp. 1545-1558.

    Article  Google Scholar 

  24. R. Acharya, J.J. Gambone, R. Bansal, P. Cilino, and S. Das: in EPD Congress 2013, John Wiley & Sons, Inc., Hoboken, NJ, pp 55–62.

  25. Wenda Tan, Shaoyi Wen, Neil Bailey and YungC Shin, Metall and Materi Trans B 2011, vol. 42B, pp. 1306-1318.

    Article  Google Scholar 

  26. Taishi Matsushita, Hans-Jörg Fecht, Rainer K. Wunderlich, Ivan Egry and Seshadri Seetharaman, J. Chem. Eng. Data 2011, vol. 54, pp. 2584-2592.

    Article  Google Scholar 

  27. R. Acharya, R. Bansal, J.J. Garnbone, and S. Das: CFD Modeling and Simulation in Materials Processing. Wiley, Hoboken, 2012, pp. 197–204.

    Book  Google Scholar 

  28. Merton C Flemings, Metallurgical transactions 1974, vol. 5, pp. 2121-2134.

    Article  Google Scholar 

  29. MB Henderson, D Arrell, R Larsson, M Heobel and G Marchant: Science and Technology of Welding & Joining 2004, vol. 9, pp. 13-21.

    Article  Google Scholar 

  30. D Dye, O Hunziker and RC Reed: Acta Materialia 2001, vol. 49, pp. 683-697.

    Article  Google Scholar 

  31. LO Osoba, RK Sidhu and OA Ojo: Materials Science and Technology 2011, vol. 27, pp. 897-902.

    Article  Google Scholar 

  32. Gürel Çam and Mustafa Koçak: International Materials Reviews 1998, vol. 43, pp. 1-44.

    Article  Google Scholar 

  33. M.J. Donachie, S.J. Donachie: Superalloys: A Technical Guide. 2nd ed., ASM International, Materials Park, OH, 2003, pp. 246–47.

    Google Scholar 

  34. Ian Hamill: Implementation of a Solidification Model in CFX-5, CFX Ltd., Oxfordshire, UK, May 2003.

    Google Scholar 

  35. Julian C. Smith, Peter Harriot, Warren L. McCabe: Unit Operations of Chemical Engineering. 7th ed., McGraw-Hill, New York, 2005, pp. 163-65.

    Google Scholar 

  36. O. Hunziker, D. Dye, S.M. Roberts, and R.C. Reed: in Mathematical Modelling of Weld Phenomena, vol. 5, IOM Communications, London, 2001, pp 299–320.

Download references

Acknowledgments

This work is sponsored by the Office of Naval Research through Grant N00014-11-1-0670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Das.

Additional information

Manuscript submitted January 20, 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1563 kb)

Supplementary material 2 (WMV 8908 kb)

Supplementary material 3 (WMV 2122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, R., Bansal, R., Gambone, J.J. et al. A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I). Metall Mater Trans B 45, 2247–2261 (2014). https://doi.org/10.1007/s11663-014-0117-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0117-9

Keywords

Navigation