Skip to main content
Log in

A Microstructure Evolution Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part II)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Part I [Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0117-9] presented a comprehensive thermal, fluid flow, and solidification model that can predict the temperature distribution and flow characteristics for the processing of CMSX-4 alloy powder through scanning laser epitaxy (SLE). SLE is an additive manufacturing technology aimed at the creation of equiaxed, directionally solidified and single-crystal (SX) deposits of nickel-based superalloys using a fast-scanning laser beam. Part II here further explores the Marangoni convection-based model to predict the solidification microstructure as a function of the conditions at the trailing edge of the melt pool formed during the SLE process. Empirical values for several microstructural characteristics such as the primary dendrite arm spacing (PDAS), the columnar-to-equiaxed transition (CET) criterion and the oriented-to-misoriented transition (OMT) criterion are obtained. Optical microscopy provides visual information on the various microstructural characteristics of the deposited material such as melt depth, CET location, OMT location, PDAS, etc. A quantitative and consistent investigation of this complex set of characteristics is both challenging and unprecedented. A customized image-analysis technique based on active contouring is developed to automatically extract these data from experimental micrographs. Quantitative metallography verifies that even for the raster scan pattern in SLE and the corresponding line heat source assumption, the PDAS follows the growth relation w ~G −0.5 V −0.25 (w = PDAS, G = temperature gradient and V = solidification velocity) developed for marginal stability under constrained growth. Models for the CET and OMT are experimentally validated, thereby providing powerful predictive capabilities for controlling the microstructure of SX alloys processed through SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

SLE:

Scanning laser epitaxy

PDAS/w:

Primary dendrite arm spacing

CET:

Columnar-to-equiaxed transition

OMT:

Oriented-to-misoriented transition

SX:

Single-crystal

G :

Temperature gradient

V :

Solidification velocity

E snake :

Total energy of the snake line

E int :

Internal force of the spline

E image :

Image force

E con :

Constraints force

E line :

Intensity of the filtered Canny output

E term :

Termination force

E edge :

edge force

ei :

Coefficient of the force terms

I:

Image intensity

S:

Displacement

N 0 :

Nucleation density

\( \Delta T_{\text{tip}}^{{}} \) :

Tip undercooling

\( \Delta T_{n}^{{}} \) :

Nucleation undercooling

x,y :

Co-ordinates

D:

Diffusion coefficient in the liquid

Γ:

Gibbs–Thomson coefficient

ΔT 0 :

Liquidus-solidus range in initial alloy

K:

Equilibrium distribution coefficient

[ijk]:

Direction

C:

Polynomial fit constant

a, n :

Material constant

Φ :

Equiaxed fraction

G hkl :

Temperature gradient in [hkl] direction

References

  1. R. Acharya, R. Bansal, J.J. Gambone, and S. Das: Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0117-9.

  2. J. Canny: IEEE Trans. Pattern Anal. Mach. Intell., 1986, pp. 679–98.

  3. D. Marr and E. Hildreth: Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1980, vol. 207, pp. 187–217.

  4. Andrew Blake, Michael Isard and David Reynard: Artificial Intelligence 1995, vol. 78, pp. 179-212.

    Article  Google Scholar 

  5. Michael Kass, Andrew Witkin and Demetri Terzopoulos: International journal of computer vision 1988, vol. 1, pp. 321-31.

    Article  Google Scholar 

  6. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi: in Computer Vision, 1995. Proc. Conf. Fifth Int., IEEE, 1995, pp 810–15.

  7. W Kurz and DJ Fisher: Fundamentals of Solidification. 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1992.

    Google Scholar 

  8. W Kurz and DJ Fisher: Acta Metallurgica 1981, vol. 29, pp. 11-20.

    Article  Google Scholar 

  9. JS Langer and J Müller-Krumbhaar: Journal of Crystal Growth 1977, vol. 42, pp. 11-14.

    Article  Google Scholar 

  10. Pollock TM, Tin S (2006) Journal of propulsion and power 22:361-74.

    Article  Google Scholar 

  11. AJ Elliott and TM Pollock: Metallurgical and Materials Transactions A 2007, vol. 38, pp. 871-82.

    Article  Google Scholar 

  12. M. Gaumann: PhD Thesis, EPFL Lausanne, Lausanne, 1999.

  13. M. Gäumann, C. Bezençon, P. Canalis and W. Kurz: Acta Materialia 2001, vol. 49, pp. 1051-62.

    Article  Google Scholar 

  14. JD Hunt: Materials Science and Engineering 1984, vol. 65, pp. 75-83.

    Article  Google Scholar 

  15. M Rappaz, SA David, JM Vitek and LA Boatner: Metallurgical Transactions A 1989, vol. 20, pp. 1125-38.

    Article  Google Scholar 

  16. M Gäumann, R Trivedi and W Kurz: Materials Science and Engineering: A 1997, vol. 226, pp. 763-69.

    Article  Google Scholar 

  17. M. Rappaz and Ch A. Gandin: Acta Metall. et Mater. 1993, vol. 41, pp. 345–60.

  18. JM Vitek: Acta Materialia 2005, vol. 53, pp. 53-67.

    Article  Google Scholar 

  19. T. D. Anderson, J. N. DuPont and T. DebRoy: Acta Materialia 2010, vol. 58, pp. 1441-1454.

    Article  Google Scholar 

  20. S. Mokadem, C. Bezençon, A. Hauert, A. Jacot and W. Kurz: Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1500-10.

    Article  Google Scholar 

  21. Weiping Liu and J. N. DuPont: Acta Materialia 2005, vol. 53, pp. 1545-58.

    Article  Google Scholar 

  22. J Safari and S Nategh: Journal of materials processing technology 2006, vol. 176, pp. 240-50.

    Article  Google Scholar 

  23. C. Flanagan: The Bresenham line-drawing algorithm (2009), http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html, 2012.

  24. Michael LV Pitteway: The Computer Journal 1967, vol. 10, pp. 282-89.

    Article  Google Scholar 

  25. W Wang, PD Lee and M McLean: Acta Materialia 2003, vol. 51, pp. 2971-87.

    Article  Google Scholar 

  26. R. Trivedi: Metallurgical Transactions A 1984, vol. 15, pp. 977-982.

    Article  Google Scholar 

  27. H. Esaka, W. Kurz, and R. Trivedi: in Solidification Processing, The Institute of Metals, London, 1988, pp 168–71.

  28. C. L. Chan, J. Mazumder and M. M. Chen: Journal of Applied Physics 1988, vol. 64, p. 6166.

    Article  Google Scholar 

  29. L. X. Yang, X. F. Peng and B. X. Wang: International Journal of Heat and Mass Transfer 2001, vol. 44, pp. 4465-73.

    Article  Google Scholar 

  30. W. Liu and J. N. DuPont: Acta Mater. 2004, vol. 52, pp. 4833–47.

  31. M Rappaz, SA David, JM Vitek and LA Boatner: Metallurgical Transactions A 1990, vol. 21, pp. 1767-82.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work by the Office of Naval Research through grant N00014-11-1-0670 as part of the Cyber enabled Manufacturing Systems (CeMS) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Das.

Additional information

Manuscript submitted January 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, R., Bansal, R., Gambone, J.J. et al. A Microstructure Evolution Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part II). Metall Mater Trans B 45, 2279–2290 (2014). https://doi.org/10.1007/s11663-014-0183-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0183-z

Keywords

Navigation