Skip to main content
Log in

An Improved Model for the Flow in an Electromagnetically Stirred Melt during Solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model for simulating the electromagnetic field and the evolution of the temperature and velocity fields during solidification of a molten metal subjected to a time-varying magnetic field is described. The model is based on the dual suspended particle and fixed particle region representation of the mushy zone. The key feature of the model is that it accounts for turbulent interactions with the solidified crystallites in the suspended particle region. An expression is presented for describing the turbulent damping force in terms of the turbulent kinetic energy, solid fraction, and final grain size. Calculations were performed for solidification of an electromagnetically stirred melt in a bottom chill mold. It was found that the damping force plays an important role in attenuating the intensity of both the flow and turbulent fields at the beginning of solidification, and strongly depends on the final grain size. It was also found that turbulence drops significantly near the solidification front, and the flow becomes laminarized for solid fraction around 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.A. Tzavaras and H.D. Brody: J. Met., 1984, vol. 36, no. 3, pp. 31-37.

    CAS  Google Scholar 

  2. C. Vives: in Magnetohydrodynamics in Process Metallurgy, J. Szekely, J.W. Evans, K. Blazek, and N. El-Kaddah, eds., TMS, Warrendale, PA, 1991, pp. 169–74.

  3. Y.A. Kompan, I. Protokovilov, Y. Fautrelle, Y.U. Gelfgat, and A. Bojarevics: in Modelling for Materials Processing, pp. 85-90, University of Latvia Press, Riga, 2010.

    Google Scholar 

  4. C. Vives and C. Perry: Int. J. Heat Mass Transfer, 1986, vol. 29, pp. 21-33.

    Article  CAS  Google Scholar 

  5. Q. Zhao, X. Zhang, C. Feng, N. Zhang, Y. Han, J. Guo, and X. Hou: Adv. Mater. Res., 2012, vols. 482-484, pp. 1447-1452.

    Article  Google Scholar 

  6. K.A. Jackson, J.D. Hunt, and D.R. Uhlmann: Trans TMS-AIME, 1966, vol. 236, pp. 149-158.

    CAS  Google Scholar 

  7. B. Willers, S. Eckert, U. Michel, I. Haase, G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55-65.

    Article  Google Scholar 

  8. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009, pp. 464-466.

    Book  Google Scholar 

  9. B. Wang, Y. Yang, and W. Tang: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 536-540.

    Article  CAS  Google Scholar 

  10. B. Chalmers: J. Aust. Inst. Met., 1963, vol. 8, pp. 255-263.

    Google Scholar 

  11. R. Mehrabian, M. Keane, and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 455-464.

    Article  CAS  Google Scholar 

  12. C.M. Oldenburg and F.J. Spera: Numer. Heat Transfer, Part B, 1992, vol. 21, pp. 217-229.

    Article  CAS  Google Scholar 

  13. C.J. Parides, R.N. Smith, and M.E. Glicksman: Metall. Mater. Trans. A, 1997, vol. 28, pp. 875-883.

    Google Scholar 

  14. T. Campanella, C. Charbon, and M. Rappaz: Scr. Mater., 2003, vol. 49, pp. 1029-1034.

    Article  CAS  Google Scholar 

  15. P.J. Prescott and F.P. Incropera: J. Heat Transf., 1995, vol. 117, pp. 716-724.

    Article  CAS  Google Scholar 

  16. P.J. Prescott and F.P. Incropera: J. Heat Transf., 1993, vol. 115, 302–10.

    Article  CAS  Google Scholar 

  17. W. Shyy, Y. Pang, G. Hunter, D.Y. Wei, and M.H. Chen: Intl. J. Heat Mass Transf., 1992, vol. 35, 1229–45.

    Article  CAS  Google Scholar 

  18. W. Shyy, Y. Pang, G. Hunter, D.Y. Wei, and M.H. Chen: ASME J. Eng. Mater. Technol., 1993, vol. 115, 8-16.

    Article  CAS  Google Scholar 

  19. R. Lantzsch, V Galindo, I. Grants, C. Zhang, O. Paetzold, G. Gerbeth, and M. Stelter: J. Crystal Growth, 2007, vol. 305, 249–56.

    Article  CAS  Google Scholar 

  20. R. Pardeshi, A.K. Singh, and P. Dutta: Numer. Heat Transfer, Part A, 2008, vol. 55, pp. 42-57.

    Article  Google Scholar 

  21. O. Budenkova, F. Baltaretu, J. Kovács, A. Roósz, A. Rónaföldi, A.M. Bianchi, and Y. Fautrelle: IOP Conf. Ser.: Mater. Sci. Eng., 2012, vol. 33, 012046.

    Article  Google Scholar 

  22. Y. Yamagishi, H. Takeuchi, A.T. Pyatenko, and N. Kayukawa: AIChE J., 1999, vol. 45, pp. 696-707.

    Article  CAS  Google Scholar 

  23. J.L. Alvarado, C. Marsh, C. Sohn, G. Phetteplace, and T. Newell: Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 1938-1952.

    Article  Google Scholar 

  24. S. Wenji, X. Rui, H. Chong, H. Shihui, D. Kaijun, and F. Ziping: Int. J. Refrig., 2009, vol. 32, pp. 1801-1807.

    Article  Google Scholar 

  25. E. Kolbe and W. Reiss: Wiss. Z. der TH Ilmenau, 1963, vol. 9, 311–17.

    Google Scholar 

  26. R.F. Dudley and P.E. Burke: IEEE Trans. Indu. Appl., 1972, vol. 8, 565-571.

    Article  Google Scholar 

  27. N. El-Kaddah and J. Szekely: J. Fluid Mech., 1983, vol. 133, 37-46.

    Article  Google Scholar 

  28. J.L. Meyer, N. El-Kaddah, J. Szekely, C. Vives, and R. Ricou: Metall. Trans. B, 1987, vol. 18, 529–38.

    Article  CAS  Google Scholar 

  29. H. Tennekes and J.L. Lumley: A First Course in Turbulence, pp. 19-20, MIT Press, Cambridge, 1972.

    Google Scholar 

  30. W. P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301-314.

    Article  Google Scholar 

  31. D.G. Thomas: J. Colloid Sci., 1965, vol. 20, pp. 267-277.

    Article  CAS  Google Scholar 

  32. P. Bradshaw, D.H. Ferriss, and N.P. Atwell: J. Fluid Mech., 1967, vol. 28, pp. 593-616.

    Article  Google Scholar 

  33. B.E. Launder and D.B. Spalding: Mathematical Models of Turbulence, p. 78, Academic Press, London, 1972.

    Google Scholar 

  34. W.M. Pun and D.B. Spalding: Report HTS/76/2, Imperial College of Science and Technology, London, August 1977.

  35. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, NY, 1980.

    Google Scholar 

  36. G. Poole, N. Rimkus, A. Murphy, P. Boehmcke, and N. El-Kaddah: in Magnesium Technology, S.N. Mathaudhu, W.H. Sillekens, N.R. Neelmeggham, and N. Hort, eds., Wiley, New York, NY, 2012, pp. 161–64.

  37. L. Nastac and N. El-Kaddah: IOP Conf. Ser.: Mater. Sci. Eng., 2012, vol. 33, 012084.

    Article  Google Scholar 

Download references

Acknowledgment

The authors graciously thank the National Science Foundation for their funding of this project under Grant CMMI-0856320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagy El-Kaddah.

Additional information

Manuscript submitted May 24, 2013.

Appendix A. The Damping Force in the Suspended Particle Region

Appendix A. The Damping Force in the Suspended Particle Region

In the suspended particle region, the fluctuating velocity of the solid particles is zero, and the instantaneous velocity of the two-phase mixture is

$$ {\mathbf{u}} = {\bar{\mathbf{u}}} + {\mathbf{u}}^{\prime } = f_{\text{L}} \left( {{\bar{\mathbf{u}}}_{\text{L}} + {\mathbf{u}}_{\text{L}}^{\prime } } \right) + f_{\text{s}} {\mathbf{u}}_{\text{s}} . $$
(A1)

The instantaneous Navier–Stokes equation in this region can then be written as

$$ \frac{{\partial \left( {\rho \left( {f_{\text{s}} {\bar{\mathbf{u}}}_{\text{s}} + f_{\text{L}} \left( {{\bar{\mathbf{u}}}_{\text{L}} + {\mathbf{u}}_{\text{L}}^{\prime } } \right)} \right)} \right)}}{\partial t} + \nabla \cdot \left( {\rho \left( {f_{\text{s}} {\bar{\mathbf{u}}}_{\text{s}} + f_{\text{L}} \left( {{\bar{\mathbf{u}}}_{\text{L}} + {\mathbf{u}}_{\text{L}}^{\prime } } \right)} \right)\left( {f_{\text{s}} {\bar{\mathbf{u}}}_{\text{s}} + f_{\text{L}} \left( {{\bar{\mathbf{u}}}_{\text{L}} + {\mathbf{u}}_{\text{L}}^{\prime } } \right)} \right)} \right) = - \nabla \left( {\bar{p} + p^{\prime } } \right) + \mu_{\text{l}} \nabla^{2} \left( {f_{\text{s}} {\bar{\mathbf{u}}}_{\text{s}} + f_{\text{L}} \left( {{\bar{\mathbf{u}}}_{\text{L}} + {\mathbf{u}}_{\text{L}}^{\prime } } \right)} \right) + {\mathbf{F}}_{\text{em}} . $$
(A2)

Taking the time average of [A2] yields

$$ \frac{{\partial \left( {\rho {\bar{\mathbf{u}}}} \right)}}{\partial t}{ + }\nabla \cdot \left( {\rho {\mathbf{\bar{u}\bar{u}}}} \right) + \nabla \cdot \left( {f_{\text{L}}^{2} \bar{\tau }_{\text{t}} } \right) = - \nabla \bar{p} + \mu_{\text{l}} \nabla^{2} {\bar{\mathbf{u}}} + {\mathbf{F}}_{\text{em}} , $$
(A3)

where τ t is the Reynolds stress tensor. From Eqs. [11] and [A3], the damping force is given by

$$ {\mathbf{F}}_{\text{D}} = \left( {1 - f_{\text{L}}^{2} } \right)\nabla \cdot \bar{\tau }_{\text{t}} . $$
(A4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, G.M., El-Kaddah, N. An Improved Model for the Flow in an Electromagnetically Stirred Melt during Solidification. Metall Mater Trans B 44, 1531–1540 (2013). https://doi.org/10.1007/s11663-013-9944-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9944-3

Keywords

Navigation