Skip to main content
Log in

A Kinetic Study of Indium Leaching from Indium-Bearing Zinc Ferrite Under Microwave Heating

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To obtain information about leaching reaction and kinetics of indium from indium-bearing materials under microwave heating (MH), leaching of indium from indium-bearing zinc ferrite (IBZF) has been investigated. IBZF samples under MH and under conventional heating (CH) were studied by X-ray diffraction and specific surface area. Compared with that of CH, the effect of MH and the effects of various control parameters on indium leaching were studied. The results showed that compared with CH, MH enhanced the indium leaching from IBZF and increased the leaching rate. The leaching behavior of indium from IBZF was analyzed by unreacted shrinking core model, and the regression of kinetic equations showed that leaching of indium from IBZF obeyed the model very well. The activation energies under MH and under CH were 77.374 kJ/mol and 53.555 kJ/mol, respectively; the ratio of frequency factor K 0(MH)/K 0(CH) was 10,818.36. The activation mechanism involved in leaching of indium under MH was mainly the increase of reactant energy and effective collision, which caused by the thermal and nonthermal microwave effect. Compared with the activation energy, the effective collision played a more important role in the acceleration of leaching of indium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.M. Alfantazi and R.R. Moskalyk: Miner. Eng., 2003, vol. 16, pp. 687-94.

    Article  CAS  Google Scholar 

  2. B.B. Adhikari, M. Gurung, H. Kawakita, and K. Ohto: Chem. Eng. Sci., 2012, vol. 78, pp. 144-54.

    Article  CAS  Google Scholar 

  3. N.S. Kwak, H.M. Park, and T.S. Hwang: Chem. Eng. J., 2012, vol. 191, pp. 579-87.

    Article  CAS  Google Scholar 

  4. S.B. Yang, B.S. Kong, D.H. Jung, Y.K. Baek, C.S. Han, S.K. Oh, and H.T. Jung: Nanoscale, 2011, vol. 3, pp. 1361-73.

    Article  CAS  Google Scholar 

  5. H.Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, and H. Morkoc: Superlattice Microstruct., 2010, vol, 48, pp. 458–84.

  6. B.P. Rao and K.H. Rao: J. Magn. Magn. Mater., 2005, vol. 292, pp. 44-48.

    Article  CAS  Google Scholar 

  7. N. Leclerc, E. Meux, and J.M. Lecuire: Hydrometallurgy, 2003, vol. 70, pp. 175-83.

    Article  CAS  Google Scholar 

  8. Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, and X.P. Li: Hydrometallurgy, 2010, vol. 100, pp. 172-76.

    Article  CAS  Google Scholar 

  9. C. Costa, A.F. Santos, M. Fortuny, P.H.H. Araújo, and C. Sayer: Mater. Sci. Eng. C: Biol. Sci., 2009, vol. 29, pp. 415-19.

    Article  CAS  Google Scholar 

  10. G. Chen, J. Chen, J.H. Peng, and R.D. Wan: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. S198-204.

    Article  Google Scholar 

  11. H.Z. Chen, S.G. Yang, J. Chang, K. Yu, and D.F. Li: Chemosphere, 2012, vol. 89, pp. 85-189.

    Google Scholar 

  12. M. Al-Harahsheh and S.W. Kingman: Hydrometallurgy, 2004, vol. 73, pp. 189-203.

    Article  CAS  Google Scholar 

  13. J.H. Huang and N.A. Rowson: Hydrometallurgy, 2002, vol. 64, pp. 169-79.

    Article  CAS  Google Scholar 

  14. H.J. Huang and N.A. Rowson: Rare Metall., 2000, vol. 19, pp. 161-71.

    CAS  Google Scholar 

  15. J.Y. Hwang, S.Z. Shi, Z.Y. Xu, and X.D. Huang: J. Miner. Mater. Charact. Eng., 2002, vol. 1, pp. 111-19.

    Google Scholar 

  16. D.K. Xia and C.A. Pickles: Miner. Eng., 2000, vol. 13, pp. 79-94.

    Article  CAS  Google Scholar 

  17. X.J. Zhai, Q. Wu, Y. Fu, L.Z. Ma, C.L. Fan, and N.J. Li: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. S77-81.

    Article  CAS  Google Scholar 

  18. M. Al-Harahsheh and S.W. Kingman: Chem. Eng. Process., 2008, vol. 47, pp. 1246-51.

    Article  CAS  Google Scholar 

  19. Y.J. Zhang, X.H. Li, L.P. Pan, Y.S. Wei, and X.Y. Liang: Hydrometallurgy, 2010, vol. 102, pp. 95-100.

    Article  CAS  Google Scholar 

  20. F. Veglio, M. Trifoni, F. Pagnanelli, and L. Toro: Hydrometallurgy, 2001, vol. 60, pp. 167-79.

    Article  CAS  Google Scholar 

  21. V. Safari, G. Arzpeyma, F. Rashchi, and N. Mostoufi: Int. J. Miner. Process., 2009, vol. 93, pp. 79-83.

    Article  CAS  Google Scholar 

  22. X. Bian, S.H. Yin, Y. Luo, and W.Y. Wu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2306-10.

    Article  CAS  Google Scholar 

  23. K. Liu, Q.Y. Chen, and Z.L. Yin: Hydrometallurgy, 2012, vols. 125–126, pp. 125–36.

  24. Y.F. Zhao and J. Chen: J. Nucl. Mater., 2008, vol. 373, pp. 53-58.

    Article  CAS  Google Scholar 

  25. K.Q. Xie, X.W. Yang, J.K. Wang, J.F. Yan, and Q.F. Shen: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 187-94.

    Article  CAS  Google Scholar 

  26. F.J. Burghart, W. Potzel, G.M. Kalvius, E. Schreier, G. Grosse, D.R. Noakes, W. Schäfer, W. Kockelmann, S.J. Campbell, W.A. Kaczmarek, A. Martin, and M.K. Krause: Physica B, 2000, vols. 289–290, pp. 286–90.

  27. Q.H. Jin: Microwave Chemistry, Science Press, Beijing, China, 1999.

  28. R.N. Gedye, F.E. Smith, and K.C. Westaway: Can. J. Chem., 1988, vol. 66, pp. 17-26.

    Article  CAS  Google Scholar 

  29. H.X. Liu and S.X. Ouyang: Methods and Principles of Solid Phase Synthesis Under Microwave, Science Press, Beijing, China, 2006.

  30. A. Hoz, A. Diaz-Ortiz, and A. Moreno: Chem. Soc. Rev., 2005, vol. 34, pp. 164-78.

    Article  Google Scholar 

  31. P.Y. Ding: Physical Chemistry, Metallurgical Industry Press, Beijing, China, 1979.

Download references

Acknowledgments

The work was supported by Guangxi Science Foundation funded project (2012GXNSFAA053210), Guangxi University Scientific Research Foundation funded project (XJZ120273), and Laboratory Construction and Experimental Teaching Reform of Guangxi University funded project (20120329).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuanhai Li or Guangtao Wei.

Additional information

Manuscript submitted March 23, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Mo, J., Li, X. et al. A Kinetic Study of Indium Leaching from Indium-Bearing Zinc Ferrite Under Microwave Heating. Metall Mater Trans B 44, 1329–1336 (2013). https://doi.org/10.1007/s11663-013-9930-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9930-9

Keywords

Navigation