Skip to main content
Log in

Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The present study evaluates the reductive leaching of indium from indium-bearing zinc ferrite using oxalic acid as a reducer in sulfuric acid solution. The effect of main factors affecting the process rate, including the oxalic-acid-to-sulfuric-acid ratio, stirring rate, grain size, temperature, and the initial concentration of synergic acid, was precisely evaluated. The results confirmed the acceptable efficiency of dissolving indium in the presence of oxalic acid. The shrinking-core model with a chemical-reaction-controlled step can correctly describe the kinetics of indium dissolution. On the basis of an apparent activation energy of 44.55 kJ/mol and a reaction order with respect to the acid concentration of 1.14, the presence of oxalic acid was found to reduce the sensitivity to temperature changes and to increase the effect of changes in acid concentration. Finally, the equation of the kinetic model based on the factors under study is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Alfantazi and R.R. Moskalyk, Processing of indium: A review, Miner. Eng., 16(2003), No. 8, p. 687.

    Article  CAS  Google Scholar 

  2. D. Pradhan, S. Panda, and L.B. Sukla, Recent advances in indium metallurgy: A review, Miner. Process. Extr. Metall. Rev., 39(2018), No. 3, p. 167.

    Article  Google Scholar 

  3. B.P. Rao and K.H. Rao, Distribution of In3+ ions in indium-substituted Ni-Zn-Ti ferrites, J. Magn. Magn. Mater., 292(2005), p. 44.

    Article  CAS  Google Scholar 

  4. Š. Langová, J. Leško, and D. Matýsek, Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy, 95(2009), No. 3–4, p. 179.

    Article  Google Scholar 

  5. X.H. Li, Y.J. Zhang, Q.L. Qin, J. Yang, and Y.S. Wei, Indium recovery from zinc oxide flue dust by oxidative pressure leaching, Trans. Nonferrous Met. Soc. China, 20(2010), No. Suppl. 1, p. s141.

    Article  CAS  Google Scholar 

  6. L.Y. Zhang, J.M. Mo, X.H. Li, L.P. Pan, X.Y. Liang, and G.T. Wei, A kinetic study of indium leaching from indium-bearing zinc ferrite under microwave heating, Metall. Mater. Trans. B, 44(2013), No. 6, p. 1329.

    Article  CAS  Google Scholar 

  7. L.Y. Zhang, X.H. Li, Y. Sun, X.C. Huang, X.B. Liu, and J.F. Yang, Microwave enhanced acid leaching of indium from zinc leaching residues containing indium-bearing zinc ferrite, Met. Mine, 3(2014), p. 36.

    Google Scholar 

  8. X.H. Li, J.Q. Xu, and L. Pan, A new mechanical activation technology to enhance leaching indium from hard-zinc, Front. Sep. Sci. Technol., (2004), p. 980.

  9. Y.J. Zhang, X.H. Li, L.P. Pan, Y.S. Wei, and X.Y. Liang, Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite, Hydrometallurgy, 102(2010), No. 1–4, p. 95.

    Article  CAS  Google Scholar 

  10. J.H. Yao, X.H. Li, and Y.W. Li, Study on indium leaching from mechanically activated hard zinc residue, J. Min. Metall. Sect. B, 47(2011), No. 1, p. 63.

    Article  CAS  Google Scholar 

  11. J.H. Yao, X.H. Li, L.P. Pan, J.M. Mo, and Z.P. Wen, Investigations on indium and zinc leachabilities from indium-bearing zinc ferrite improved by planetary ball milling, J. Mater. Eng. Perform., 22(2013), No. 5, p. 1311.

    Article  CAS  Google Scholar 

  12. J.H. Yao and X.H. Li, Study on indium leaching from indium-poor zinc residue enhanced by ultrasonic treatment, Adv. Mater. Res., 201–203(2011), p. 1770.

    Article  Google Scholar 

  13. M.C.B. Fortes and J.S. Benedetto, Separation of indium and iron by solvent extraction, Miner. Eng., 11(1998), No. 5, p. 447.

    Article  CAS  Google Scholar 

  14. P. Xing, B.Z. Ma, P. Zeng, C.Y. Wang, L. Wang, Y.L. Zhang, Y.Q. Chen, S. Wang, and Q.Y. Wang, Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1217.

    Article  CAS  Google Scholar 

  15. S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim, Study on the kinetics of iron oxide leaching by oxalic acid, Int. J. Miner. Process., 80(2006), No. 2–4, p. 144.

    Article  CAS  Google Scholar 

  16. Z.G. Deng, F. Zhang, C. Wei, C.X. Li, X.B. Li, G. Fan, and M.T. Li, Acid leaching zinc and indium with reduction ferric simultaneously from marmatite and high-iron neutral leaching residue, [in] S. Alam, H. Kim, N.R. Neelameggham, T. Ouchi, and H. Oosterho, eds, Rare Metal Technology, Springer Cham, Germany, 2016, p. 55.

    Google Scholar 

  17. F. Zhang, C. Wei, Z.G. Deng, X.B. Li, C.X. Li, and M.T. Li, Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant, Hydrometallurgy, 161(2016), p. 102.

    Article  CAS  Google Scholar 

  18. F. Zhang, C. Wei, Z.G. Deng, C.X. Li, X.B. Li, and M.T. Li, Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media, Trans. Nonferrous Met. Soc. China, 26(2016), No. 9, p. 2495.

    Article  CAS  Google Scholar 

  19. V.R. Ambikadevi and M. Lalithambika, Effect of organic acids on ferric iron removal from iron-stained kaolinite, Appl. Clay Sci., 16(2000), No. 3–4, p. 133.

    Article  CAS  Google Scholar 

  20. L.G. Felipe, S.R. Eleazar, H.C. Leticia, A.H.H. Roman, and C.S. Eduardo, Kinetics study of iron leaching from kaolinitic clay using oxalic acid, Eur. Sci. J., 11(2015), No. 12, p. 12.

    Google Scholar 

  21. U.K. Sultana and A.S.W. Kurny, Dissolution kinetics of iron oxides in clay in oxalic acid solutions, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1083.

    Article  CAS  Google Scholar 

  22. K.M. Parida and N.N. Das, Reductive dissolution of hematite in hydrochloric acid medium by some inorganic and organic reductants: A comparative study, Indian J. Eng. Mater. Sci., 3(1996), No. 6, p. 243.

    CAS  Google Scholar 

  23. R.N. Sahoo, P.K. Naik, and S.C. Das, Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution, Hydrometallurgy, 62(2001), No. 3, p. 157.

    Article  CAS  Google Scholar 

  24. A. Prasad Das, S. Swain, S. Panda, N. Pradhan, and L.B. Sukla, Reductive acid leaching of low grade manganese ores, Geomaterials, 2(2012), No. 4, p. 70.

    Article  Google Scholar 

  25. A.A. Nayl and H.F. Aly, Acid leaching of ilmenite decomposed by KOH, Hydrometallurgy, 97(2009), No. 1–2, p. 86.

    Article  CAS  Google Scholar 

  26. A.A. Nayl, N.S. Awwad, and H.F. Aly, Kinetics of acid leaching of ilmenite decomposed by KOH: Part 2. Leaching by H2SO4 and C2H2O4, J. Hazard. Mater., 168(2009), No. 2–3, p. 793.

    Article  CAS  Google Scholar 

  27. W. Jonglertjunya, S. Rattanaphan, and P. Tipsak, Kinetics of the dissolution of ilmenite in oxalic and sulfuric acid solutions, Asia-Pac. J. Chem. Eng., 9(2014), No. 1, p. 24.

    Article  CAS  Google Scholar 

  28. P. Zürner and G. Frisch, Leaching, and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent, ACS Sustainable Chem. Eng., 7(2019), No. 5, p. 5300.

    Article  Google Scholar 

  29. J.Y. Cui, N.W. Zhu, D.L. Luo, Y. Li, P.X. Wu, Z. Dang, and X. Hu, The role of oxalic acid in the leaching system for recovering indium from waste liquid crystal display panels, ACS Sustainable Chem. Eng., 7(2019), No. 4, p. 3849.

    Article  CAS  Google Scholar 

  30. D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos, Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions, Hydrometallurgy, 42(1996), No. 2, p. 257.

    Article  CAS  Google Scholar 

  31. M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, and A. Kontopoulos, Dissolution of hematite in acidic oxalate solutions, Hydrometallurgy, 44(1997), No. 3, p. 287.

    Article  CAS  Google Scholar 

  32. R. Salmimies, M. Mannila, J Kallas, and A. Häkkinen, Acidic dissolution of magnetite: Experimental study on the effects of acid concentration and temperature, Clays and Clay Miner., 59(2011), No. 2, p. 136.

    Article  CAS  Google Scholar 

  33. J. Wiley, K. Hepburn, and O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1999.

    Google Scholar 

  34. Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, and X.P. Li, Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite, Hydrometallurgy, 100(2010), No. 3–4, p. 172.

    Article  CAS  Google Scholar 

  35. L. Tian, Y. Liu, T.A. Zhang, G.Z. Lv, S. Zhou, and G.Q. Zhang, Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching, Rare Met., 36(2017), No. 1, p. 69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Irankooh plant for supplying the samples of zinc concentrate, and to Sharif Central Lab for their contribution to the analysis of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yoozbashizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddah, F., Alitabar, M. & Yoozbashizadeh, H. Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution. Int J Miner Metall Mater 28, 373–379 (2021). https://doi.org/10.1007/s12613-020-1974-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1974-7

Keywords

Navigation