Skip to main content
Log in

Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. United States Automotive Materials Partnership (USAMP): Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium, United States Council for Automotive Research (USCAR), 2006.

  2. T. M. Pollock: Science, 2010, vol. 328(5981), pp. 986-87.

    Article  CAS  Google Scholar 

  3. G.S. Cole: in Magnesium Technology 2007, R.S. Beals, A.A. Luo, N.R. Neelameggham, and M.O. Pekguleryuz, eds., TMS, Warrendale, PA, 2007, pp. 35–40.

  4. J.F. Kurgan: U.S. Patent 5,053,924, 1991.

  5. E. Aghion and B. Bronfin: Mater. Sci. Forum, 2000, vol. 350-351, pp. 19-30.

    Article  Google Scholar 

  6. R.E. Brown: in International Symposium of 4th on Recycling of Metals and Engineered Materials, D.L. Donald, Jr., J.C. Daley, and R.L. Stephens, eds., TMS, Warrendale, PA, 2000, pp. 1317–29.

  7. L. Riopelle: JOM, 1996, vol. 48, No. 10, pp. 44-46.

    Article  CAS  Google Scholar 

  8. G. Hanko, H. Antrekowitsch and P. Ebner: JOM, 2002, vol. 54 (2), pp. 51-54.

    Article  CAS  Google Scholar 

  9. A. Tharumarajah and P. Koltun: J. Clean. Prod., 2007, vol. 15 (11-12), pp. 1007-13.

    Article  Google Scholar 

  10. O. Wallevik and J.B. Ronhaug: U.S. Patent 5,167,700, 1992.

  11. H.E. Friedrich and B.L. Mordike: Magnesium Technology: Metallurgy, Design Data, Applications, Springer, Germany, 2006, p. 638.

  12. S.D. Cramer and B.S. Covino: ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection, ASM International, Materials Park, OH, 2003, p. 693.

  13. T. Zhu, N. Li, X. Mei, A. Yu, and S. Shang: Magnesium Technology 2001, TMS, Warrendale, PA, 2001, pp. 55–60.

  14. T. A. Utigard, K. Friesen, R.R. Roy, J. Lim, A. Silny, and C. Dupuis: JOM, vol. 50 (11), 1998, pp. 38-43.

    Article  CAS  Google Scholar 

  15. M.C. Mangalick: U.S. Patent 4,052,199, 1977.

  16. M.C. Mangalick: U.S. Patent 4,169,584, 1979.

  17. U.B. Pal, D.E. Woolley, and G.B. Kenney: JOM, 2001, vol. 53 (10) pp. 32-35.

    Article  CAS  Google Scholar 

  18. A. Krishnan, U. B. Pal and X. G. Lu: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 463-73.

    Article  CAS  Google Scholar 

  19. U. B. Pal and A. C. Powell: JOM, 2007, vol. 59 (5), pp.44-49.

    Article  CAS  Google Scholar 

  20. E. Gratz, S. Pati, J. Milshtein, A. Powell, and U. Pal: in Electrometallurgy 2012, M.L. Free, M. Moats, G. Houlachi, E. Asselin, A. Allanore, J. Yurko, and S. Wang, eds., TMS, Warrendale, PA, 2012, pp. 111–18.

  21. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1385-96.

    Article  CAS  Google Scholar 

  22. S. C. Britten and U. B. Pal: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 733-53.

    Article  CAS  Google Scholar 

  23. K. R. Copper and M. Smith: J. Power Sources, 2006, vol. 160, pp. 1088-95.

    Article  Google Scholar 

  24. A. S. Dworkin and M. A. Bredig: J. Phys. Chem., 1971, vol. 75 (15), pp. 2340-44.

    Article  CAS  Google Scholar 

  25. E. Gratz, S. Pati, J. Milshtein, A. Powell, and U. Pal: in Magnesium Technology 2011, W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, and S.N. Mathaudhu, eds., Wiley-TMS, Warrendale, PA, 2011, pp. 39–42.

  26. A. V. Virkar: J. Power Sources, 2005, vol. 147 (1-2), pp. 8-31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Department of Energy under Award No. DE-EE0003454. The authors would like to thank Dr. Eric Gratz and Dr. Soobhankar Pati for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Pal.

Additional information

Manuscript submitted May 18, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, X., Zink, P.A., Pal, U.B. et al. Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis. Metall Mater Trans B 44, 261–271 (2013). https://doi.org/10.1007/s11663-013-9797-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9797-9

Keywords

Navigation