Skip to main content
Log in

A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.J. Koros: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 769–79.

    Article  CAS  Google Scholar 

  2. B. Das, S. Prakash, P.S.R. Reddy, and V.N. Misra: Resour. Conserv. Recy., 2007, vol. 50, pp. 40–57.

    Article  Google Scholar 

  3. J. Geiseler: Waste Manage., 1996, vol. 16, pp. 59–63.

    Article  CAS  Google Scholar 

  4. D. Durinck, F. Engstrom, S. Arnout, J. Heulens, P.T. Jones, B. Bjorkman, B. Blanpain, and P. Wollants: Resour. Conserv. Recy., 2008, vol. 52, pp. 1121–31.

    Article  Google Scholar 

  5. C. Shi and J. Qian: Resour. Conserv. Recy., 2000, vol. 29, pp. 195–207.

    Article  Google Scholar 

  6. A.R. Lee: Blast Furnace and Steel Slag, Edward Arnold, London, 1974.

    Google Scholar 

  7. Y.-B. Zong, D.-Q. Cang, Y.-P. Zhen, Y. Li, and H. Bai: T. Nonferr. Metal. Soc., 2009, vol. 19, pp. s834–39.

    Article  CAS  Google Scholar 

  8. R. Rawlings, J. Wu, and A. Boccaccini: J. Mater. Sci., 2006, vol. 41, pp. 733–61.

    Article  CAS  Google Scholar 

  9. A.A. Francis, R.D. Rawlings, and A.R. Boccaccini: J. Mater. Sci. Lett., 2002, vol. 21, pp. 975–80.

    Article  CAS  Google Scholar 

  10. P. Colombo, G. Brusatin, E. Bernardo, and G. Scarinci: Curr. Opin. Solid State Mater. Sci., 2003, vol. 7, pp. 225–39.

    Article  CAS  Google Scholar 

  11. J.E. Kruger, K.H.L. Sehlke, and J.H. van Aardt: Cem. Lime Manuf., 1964, vol. 37, no. 5, pp. 89–93.

    Google Scholar 

  12. Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, and K. Ishii: ISIJ Int., 1998, vol. 38, pp. 348–56.

    Article  CAS  Google Scholar 

  13. Y. Kashiwaya, T. Nakauchi, K.S. Pham, S. Akiyama, and K. Ishii: ISIJ Int., 2007, vol. 47, pp. 44–52.

    Article  CAS  Google Scholar 

  14. M.H. Reid, D.J. Phelan, and R.J. Dippenaar: ISIJ Int., 2004, vol. 44, pp. 565–72.

    Article  CAS  Google Scholar 

  15. H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142–50.

    Article  CAS  Google Scholar 

  16. A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 940–45.

    Article  CAS  Google Scholar 

  17. A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1–6.

    Google Scholar 

  18. H.S. Ray: Metall. Trans. B, 1979, vol. 10B, pp. 677–79.

    Article  CAS  Google Scholar 

  19. S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87–94.

    Article  CAS  Google Scholar 

  20. K.C. Mills, L. Courtney, A.B. Fox, B. Harris, Z. Idoyaga, and M.J. Richardson: Thermochim. Acta, 2002, vol. 391, pp. 175–84.

    Article  CAS  Google Scholar 

  21. W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Mining Met. Eng., 1939, vol. 135, pp. 416–42.

    Google Scholar 

  22. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  23. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  24. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  25. H. Yinnon and D.R. Uhlmann: J. Non-Cryst. Solids, 1983, vol. 54, pp. 253–75.

    Article  CAS  Google Scholar 

  26. D.W. Henderson: J. Non-Cryst. Solids, 1979, vol. 30, pp. 301–15.

    Article  CAS  Google Scholar 

  27. J. Vazquez, C. Wagner, P. Villares, and R. Jimenez-Garay: Acta Mater., 1996, vol. 44, pp. 4807–13.

    Article  CAS  Google Scholar 

  28. M.C. Weinberg: Thermochim. Acta, 1996, vols. 280–281, pp. 63–71.

    Article  Google Scholar 

  29. T.J.W. De Bruijn, W.A. De Jong, and P.J. Van Den Berg: Thermochim. Acta, 1981, vol. 45, pp. 315–25.

    Article  Google Scholar 

  30. J. Farjas and P. Roura: Acta Mater., 2006, vol. 54, pp. 5573–79.

    Article  CAS  Google Scholar 

  31. G.D. Raithby and K.G.T. Hollands: In Handbook of Heat Transfer (3rd ed.), W.M. Rohsenow, J.P. Hartnett, and Y.I. Cho, eds., McGraw-Hill, New York, NY, 1998, pp. 4.1–4.99.

  32. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, NY, 1980.

    Google Scholar 

  33. Y.S. Touloukian: Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1970–1977.

  34. D.E. Sharp and L.B. Ginther: J. Am. Ceram. Soc., 1951, vol. 34, pp. 260–71.

    Article  CAS  Google Scholar 

  35. K.S. Goto, H.W. Gudenau, K. Nagata, and K.-H. Lindner: Stahl Eisen, 1985, vol. 105, no. 24, pp. 63–70.

    Google Scholar 

  36. G.-H. Zhang and K.-C. Chou: J. Iron Steel Res. Int., 2010, vol. 17, no. 4, pp. 1–4.

    Article  Google Scholar 

  37. D. Wang, Y. Liu, Z. Gao, and Y. Zhang: J. Non-Cryst. Solids, 2008, vol. 354, pp. 3990–99.

    Article  CAS  Google Scholar 

  38. X. Dai, P. Guo, Y. Qi, C. Zhang, D. Yan, and H. Xu: Iron Steel, 2008, vol. 43, no. 10, pp. 17–20.

    CAS  Google Scholar 

  39. L. Gan, C. Zhang, J. Zhou, and F. Shangguan: J. Non-Cryst. Solids, 2012, vol. 358, pp. 20–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Science and Technology of the People’s Republic of China for part of the financial support and Tangshan Steel for help with preparing the slag samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Zhang.

Additional information

Manuscript submitted July 11, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, L., Zhang, C., Shangguan, F. et al. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag. Metall Mater Trans B 43, 460–467 (2012). https://doi.org/10.1007/s11663-011-9631-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9631-1

Keywords

Navigation