Skip to main content

Advertisement

Log in

Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential (\( \eta_{\text{crt}} \approx - 0.53V \)) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.T. Carlin, W. Crawford, and M. Bersch: J. Electrochem. Soc., 1992, vol. 139, pp. 2720–27.

    Article  CAS  Google Scholar 

  2. R.T. Carlin, P.C. Trulove, and H.C. De Long: J. Electrochem. Soc., 1996, vol. 143, pp. 2747–58.

    Article  CAS  Google Scholar 

  3. J. Robinson and R.A. Osteryoung: J. Electrochem. Soc., 1980, vol. 127, pp. 122–28.

    Article  CAS  Google Scholar 

  4. P.K. Lai and M. Skyllas-Kazacos: J. Electroanal. Chem., 1988, vol. 248, pp. 431–40.

    Article  CAS  Google Scholar 

  5. P.K. Lai and M. Skyllas-Kazacos: Electrochim. Acta, 1987, vol. 32, pp. 1443–49.

    Article  CAS  Google Scholar 

  6. C.-C. Yang: Mater. Chem. Phys., 1994, vol. 37, pp. 355–61.

    Article  CAS  Google Scholar 

  7. W.R. Pitner, C.L. Hussey, and G.R. Stafford: J. Electrochem. Soc., 1996, vol. 143, pp. 130–38.

    Article  CAS  Google Scholar 

  8. T. Jiang, M.J. Chollier Brym, G. Dube, A. Lasia, and G.M. Brisard: Surf. Coat. Technol., 2007, vol. 201, pp. 6309–17.

  9. T. Jiang, M.J. Chollier Brym, G. Dube, A. Lasia, and G.M. Brisard: Surf. Coat. Technol., 2006, vol. 201, pp. 1–9.

    Article  CAS  Google Scholar 

  10. T. Jiang, M.J. Chollier Brym, G. Dube, A. Lasia, and G.M. Brisard, Surf. Coat. Technol., 2006, vol. 201, pp. 10–18.

    Article  CAS  Google Scholar 

  11. S. Zein El Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, and F. Endres: Chem. Phys. Chem., 2006, vol. 7, pp. 1535–43.

    Article  CAS  Google Scholar 

  12. Q. Liao, W.R. Pitner, G. Stewart, C.L. Hussey, and G.R. Stafford: J. Electrochem. Soc., 1997, vol. 144, pp. 936–43.

    Article  CAS  Google Scholar 

  13. D. Pradhan and R.G. Reddy: Electrochim. Acta, 2009, vol. 54, pp. 1874–80.

    Article  CAS  Google Scholar 

  14. D. Pradhan, R.G. Reddy, and A. Lahiri: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 114–22.

    Article  CAS  Google Scholar 

  15. J. Vaughan and D. Dreisinger: J. Electrochem. Soc., 2008, vol. 155, pp. D68–72.

    Article  CAS  Google Scholar 

  16. V. Kamavaram and R.G. Reddy: Light Metals 2005, TMS, Warrendale, PA, 2005, pp. 501–05.

  17. M. Zhang, V. Kamavaram, and R.G. Reddy: J. Met., 2003, vol. 55 (11), pp. 54–57.

  18. V. Kamavaram and R.G. Reddy: Metal Separation Technologies III, R.E. Aune and M. Kekkonen, eds., Helsinki University of Technology, Espoo, Finland, 2004, pp. 143–51.

  19. V. Kamavaram, D. Mantha, and R.G. Reddy: Electrochim. Acta, 2005, vol. 50, pp. 3286–95.

    Article  CAS  Google Scholar 

  20. V. Kamavaram, D. Mantha, and R.G. Reddy: J. Min. Met., 2003, vol. 39 B, nos. 1,2, pp. 43–58.

  21. D. Pradhan, D. Mantha, and R.G. Reddy: Electrochim. Acta, 2009, vol. 54, pp. 6661–67.

    Article  CAS  Google Scholar 

  22. D. Pradhan and R.G. Reddy: Energy Technology Perspectives: Carbon Dioxide Reduction, TMS, Warrendale, PA, 2009, p. 17.

  23. E.P. Wiechmann, G.A. Vidal, and A.J. Pagliero: IEEE Trans. Ind. Appl., 2006, vol. 42, pp. 851–55.

    Article  CAS  Google Scholar 

  24. Z.J. Karpinski and R.A. Osteryoung: Inorg. Chem., 1984, vol. 23, pp. 1491–94.

    Article  CAS  Google Scholar 

  25. T.J. Melton, J. Joyce, J.T. Maloy, J.A. Boon, and J.S. Wilkes: J. Electrochem. Soc., 1990, vol. 137, pp. 3865–69.

    Article  CAS  Google Scholar 

  26. V. Kamavaram: Ph.D. Dissertation, The University of Alabama, Tuscaloosa, AL, 2004.

  27. K. Kim, C. Lang, and P.A. Kohl: J. Electrochem. Soc., 2005, vol. 152, pp. E9–13.

    Article  CAS  Google Scholar 

  28. K.I. Popov, S.S. Djokić, and B.N. Grgur: Fundamental Aspects of Electrometallurgy, Springer, New York, NY, 2002, pp. 14–95.

    Google Scholar 

  29. D. Pradhan: Ph.D. Dissertation, The University of Alabama, Tuscaloosa, AL, 2010.

  30. J.K. Chang, S.Y. Chen, W.T. Tsai, M.J. Deng, and I.W. Sun: J. Electrochem. Soc., 2008, vol. 155, no. 3, pp. C112–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge gratefully the financial support from the Department of Energy, ACIPCO and The University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy.

Additional information

Manuscript submitted June 10, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, D., Reddy, R.G. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes. Metall Mater Trans B 43, 519–531 (2012). https://doi.org/10.1007/s11663-011-9623-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9623-1

Keywords

Navigation