Skip to main content

Advertisement

Log in

Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. MAGMASOFT is a registered trademark of MAGMA GmbH, Aachen, Germany.

References

  1. MAGMAsoft v.4.4 Reference Manual, MAGMA GmbH, Aachen, Germany, www.magmasoft.com.

  2. P. Kotas, J.H. Hattel, J. Thorborg, I.L. Svensson, and S. Seifeddine: Proc. International Ph.D. Foundry Conference, Brno, Czech Republic, 2009.

  3. S. Seifeddine, M. Wéssen, and I.L. Svensson: Metall. Sci. Technol., 2007, vol. 24, no. 2, p. 7.

    Google Scholar 

  4. J. Sturm, E. Hepp, and A. Enger-Walter: 20 th CAD-FEM Users` Meeting 2002, International Congress on FEM Technology, Lake Constance, Germany, 2002.

    Google Scholar 

  5. A. Egner-Walter: CP+T Casting Plant Tech. Int., 2007, vol. 23, no. 1, pp. 24–29.

    Google Scholar 

  6. D.R. Gunasageram, B.R. Finnin, and F.B. Polivka: Mater. Sci. Technol., 2007, vol. 23, no. 7, pp. 847–56.

    Article  Google Scholar 

  7. K. Domkin, J.H. Hattel, and J. Thorborg: J. Mater. Process. Tech., 2009, vol. 209, no. 8, pp. 4051–61.

    Article  CAS  Google Scholar 

  8. P. Kotas: Master’s Thesis, Technical University of Denmark, Lyngby, Denmark, 2007.

  9. Z. Lin, C.A. Monroe, R.K. Huff, and C. Beckermann: Proc. Int. Conf. On Modelling of Casting, Welding and Advanced Solidification Processes, MCWASP XII, Vancouver, Canada, 2009, pp. 329–36.

    Google Scholar 

  10. V. Kokot and P. Bernbeck: Proc. Int. Conf. On Modelling of Casting, Welding and Advanced Solidification Processes, MCWASP X, Destin, FL, 2003, pp. 487–94.

    Google Scholar 

  11. MAGMAfrontier v.4.4 Reference Manual, MAGMA GmbH, Aachen, Germany, www.magmasoft.com, 2005.

  12. I. Hahn and G. Hartmann: Cast. Plant Technol., 2008, vol. 24 (4), pp. 2–14.

    Google Scholar 

  13. I. Hahn and J.C. Sturm: Proc. World Foundry Congress, Hangzhou, China, 2010.

  14. V.D. Tsoukalas: Proc. I Mech. E, 2008, vol. 222, pp. 1097–1106.

    Google Scholar 

  15. V.D. Tsoukalas: Mater. Des., 2008, vol. 29, pp. 2027–33.

    Article  CAS  Google Scholar 

  16. N. Gramegna, P. Baumgartner, and V. Kokot: IDEAL International Conf., Lecce, Italy, 2005.

    Google Scholar 

  17. J. Campbell: Mater. Sci. Tech., 1988, vol. 4, pp. 194–204.

    Article  CAS  Google Scholar 

  18. J.C. Simo and T.J.R. Hughes: Computational Inelasticity Series: Interdisciplinary Applied Mathematics, vol. 7, 1st ed., Springer, New York, NY, 1998.

  19. J.H. Hattel: Fundamentals of Numerical Modelling of Casting Processes, 1st ed., Polyteknisk Forlag, Kgs. Lyngby, 2005.

  20. W.S. Pellini: AFS Trans., 1953, vol. 61, pp. 61–80.

    Google Scholar 

  21. E. Niyama, T. Uchida, M. Morikawa, and S Saito: AFS Int. Cast. Met. J., 1982, vol. 7, no. 3, pp. 52–63.

    Google Scholar 

  22. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, Switzerland, 2009.

    Book  Google Scholar 

  23. K.D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163–75.

    Article  CAS  Google Scholar 

  24. K.D. Carlson, S. Ou, and C. Beckermann: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 843–56.

    Article  CAS  Google Scholar 

  25. R.A. Hardin, S. Ou, K.D. Carlson, and C. Beckermann: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 731–40.

    Google Scholar 

  26. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1517–31.

    Article  CAS  Google Scholar 

  27. G.K. Sigworth and C. Wang: AFS Trans, 1992, vol. 100, pp. 989–1004.

    CAS  Google Scholar 

  28. C. Monroe and C. Beckermann: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 30–36.

    Google Scholar 

  29. C. Monroe: Ph.D. Dissertation, University of Iowa, Iowa City, IA, 2008.

  30. U. Feurer: Giessereiforschung, 1976, vol. 28, no. 2, pp. 75–80.

    CAS  Google Scholar 

  31. I. Farup and A. Mo: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1461–72.

    Article  CAS  Google Scholar 

  32. Y.M. Wong, H.N. Han, T. Yeo, and K.H. Oh: ISIJ Int., 2000, vol. 40, no. 2, pp. 129–36.

    Article  Google Scholar 

  33. U.K. Bhattacharya, C.M. Adams, and H.F. Taylor: AFS Trans., 1952, vol. 60, p. 675.

    Google Scholar 

  34. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.

    Article  CAS  Google Scholar 

  35. D.E. Goldberg: Genetic Algorithms in Search, Optimization & Machine Learning, Addison Wesley Longmann, Inc., Boston, MA, 1989.

  36. E. Zitzler: Ph.D. Dissertation, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1999.

  37. S. Poles: MOGA-II: An improved Multi-Objective Genetic Algorithm. Technical Report; ESTECO s.r.l., 2003.

  38. C.C. Tutum: Ph.D. Dissertation, Technical University of Denmark, Kongens Lyngby, Denmark, 2009.

  39. K. Deb: Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY, 2001.

    Google Scholar 

  40. C.C. Tutum and J.H. Hattel: Sci. Technol. Weld. Joi., 2010, vol. 15, no. 5, pp. 369–77.

    Article  Google Scholar 

  41. P. Kotas, C.C. Tutum, O. Snajdrova, J. Thorborg, and J.H. Hattel: Int. J. Met. Cast., 2010, vol. 4 (4).

  42. P. Kotas, C.C. Tutum, S. Andersen, and J.H. Hattel: 115th Metalcasting Congress, Schaumburg, IL, 2011.

  43. K. Deb: Eng. Optim., 2003, vol. 35, no. 5, pp. 445–70.

    Article  Google Scholar 

  44. J. Kor, X. Chen, and H. Hu: IEEE International Symp. on Intelligent Control, Saint Petersburg, Russia, 2009.

    Google Scholar 

  45. I. Sobol: SIAM J. Numer. Anal., 1979, vol. 16, pp. 790–93.

    Article  Google Scholar 

  46. J. Campbell: Castings Practice, The 10 Rules of Castings, Elsevier Butterworth-Heinemann, Atlanta, GA, 2004.

    Google Scholar 

  47. J. Campbell: Castings, Elsevier Butterworth-Heinemann, Atlanta, GA, 2003.

  48. X. Dai, X. Yang, J. Campbell, and J. Wood: Mater. Sci. Technol., 2004, vol. 20, no. 4, pp. 505–13.

    Article  CAS  Google Scholar 

  49. K. Miettinen: Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, MA, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kotas.

Additional information

Manuscript submitted April 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotas, P., Tutum, C.C., Thorborg, J. et al. Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization. Metall Mater Trans B 43, 609–626 (2012). https://doi.org/10.1007/s11663-011-9617-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9617-z

Keywords

Navigation