Skip to main content
Log in

Copper Removal from Hypereutectic Cu-Si Alloys by Heavy Liquid Media Separation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A high-capacity method for silicon refining is investigated. The biggest obstacle in Si refining using the alloying technique is the amount of solute element. In the current work, Cu is removed from two Cu-Si hypereutectic alloys by the heavy liquid media separation technique. The results indicated 86.0 pct silicon recovered, which is close to the theoretical limit. The chemical analysis showed a Cu concentration of 0.68 wt pct in the 50 Cu-Si alloy for a 75-μm average particle size after heavy liquid media separation. The optimal particle size was found in the range of 75 to 125 μm. Heavy liquid media separation is an efficient technique in the process of liberating Si dendrites that can be used as feedstock in solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

η :

viscosity of the heavy liquid media

ρ MS :

density of media separator

\( \rho_{{{\text{Cu}}_{3} {\text{Si}}}} \) :

density of Cu3Si intermetallic

ρ Si :

density of silicon

C Si,Alloy :

Si concentration in Cu-Si alloy

\( C_{\text{LightMedia}}^{\text{Cu}} \) :

Cu concentration in light media

\( C_{\text{HeavyMedia}}^{\text{Cu}} \) :

Cu concentration in heavy media

C Si :

maximum Si concentration at room temperature for hypereutectic Cu-Si alloy

\( C_{{{\text{Cu}}_{3} {\text{Si}}}} \) :

maximum Cu3Si concentration at room temperature for hypereutectic Cu-Si alloy

DF :

density factor

F Buoyant :

buoyancy force

F Drag :

drag force

F Gravity :

gravitational force

F CPI :

interaction force among particles

g :

gravity coefficient

M LightMedia :

weights of light particles after heavy media separation

M HeavyMedia :

weights of heavy particles after heavy media separation

M Total :

weight of the particles before heavy media separation

R :

particle radius

R Cu :

copper removal

\( {\text{Si}}_{\text{Rec}}^{\text{Exp}} \) :

experimental silicon recovery

\( {\text{Si}}_{\text{Rec}}^{\text{Theor}} \) :

theoretical amount of Si in hypereutectic Cu-Si alloy

Si Rec :

Si recovery in Cu-Si alloy

V Particle :

velocity of the particle

References

  1. N. Mardesich, M. Leipold, G. Turner, and T. Digges: Metall. Trans. A, 1979, vol. 10A, pp. 1831–35.

    CAS  Google Scholar 

  2. J. Driole and E. Bonnier: Metallwiss. Tech., 1971, vol. 25, pp. 2–7.

    CAS  Google Scholar 

  3. R. Monner and J.C. Giaco: Helv. Chem. Acta, 1964, vol. 42, no. 2, pp. 345–53.

    Article  Google Scholar 

  4. T. Scott: Patent #: 12/288,857, International Class: C01B 33/02, Foreign Patent #: WO-2007112592, 2010.

  5. J. Juneja and T. Mukherjee: Hydrometallurgy, 1986, vol. 16, pp. 69–75.

    Article  CAS  Google Scholar 

  6. H. Bracht: Mater. Sci. Semiconductor Proc., 2004, vol. 7, pp. 113–24.

    Article  CAS  Google Scholar 

  7. T. Prescha and J. Weber: Mater. Sci. Forum, 1992, vol. 83, no. 87, p. 167.

    Article  Google Scholar 

  8. T. Heiser, A. Istratov, C. Flink, and E. Weber: Mater. Sci. Eng. B, 1999, vol. 58, p. 149.

    Article  Google Scholar 

  9. D. Trinkle and C. Woodward:Science, 2005, vol. 310, p. 1665.

    Article  CAS  Google Scholar 

  10. A. Mitrasinovic and T. Utigard: Silicon, 2009, vol. 1, pp. 239–48.

    Article  CAS  Google Scholar 

  11. J. Thomas: National Nursery Proc., Nurseryman’s Conference and Seed Processing Workshop, Eureka, CA, 1978.

  12. D. Porier and G. Geiger: J. Miner. Met. Mater. Soc., 1994, p. 71.

  13. L. Van Kooy, M. Mooij, and P. Rem: Phys. Separ. Sci. Eng., 2004, vol. 13, no. 1, pp. 25–32.

    Article  Google Scholar 

  14. M. Shabani, Y. Shiina, F. Kirscht, and Y. Shimanuki:Mater. Sci. Eng. B, 2003, vol. 102, pp. 238–46.

    Article  Google Scholar 

  15. H. Chung, S. Lee, Y. Kim, K. Lee, and D. Kim: Anal. Sci., 2003, vol. 19, no. 7, pp. 1051–54.

    Article  CAS  Google Scholar 

  16. M. Qian, P. Cao, M. Easton, S. McDonals, and D. St. John: Acta Mater., 2010, vol. 58, pp. 3260–70.

    Google Scholar 

  17. M. Johnsson: Thermochem. Acta, 1995, vol. 256, pp. 107–21.

    Article  CAS  Google Scholar 

  18. R. Olesinski and G. Abbaschian: J. Phase Equilib., 1986, vol. 7, no. 2, pp. 170–78.

    CAS  Google Scholar 

  19. J. Walklate and P. Fourie: J. S. Afr. Inst. Min. Metall., 2006, vol. 106, pp. 741–48.

    CAS  Google Scholar 

  20. A. Falconer: Phys. Separ. Sci. Eng., 2003, vol. 12, no. 1, pp. 31–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank NSERC Canada for funding the project and Arise Technologies Corporation for supplied material. Thanks are also due to the members of the Chemical Metallurgy Process group at the University of Toronto for their continuous support and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar M. Mitrašinović.

Additional information

Manuscript submitted February 7, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrašinović, A.M., Utigard, T.A. Copper Removal from Hypereutectic Cu-Si Alloys by Heavy Liquid Media Separation. Metall Mater Trans B 43, 379–387 (2012). https://doi.org/10.1007/s11663-011-9614-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9614-2

Keywords

Navigation