Skip to main content
Log in

Synthesis, Thermodynamic, and Kinetics of Rubidium Jarosite Decomposition in Calcium Hydroxide Solutions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Rubidium jarosite was synthesized as a single phase by precipitation from aqueous solution. X-ray diffraction and scanning electron microscopy energy-dispersive spectrometry analysis showed that the synthetic product is a solid rubidium jarosite phase formed in spherical particles with an average particle size of about 35 μm. The chemical analysis showed an approximate formula of Rb0.9432Fe3(SO4)2.1245(OH)6. The decomposition of jarosite in terms of solution pH was thermodynamically modeled using FACTSage by constructing the potential pH diagram at 298 K (25 °C). The E-pH diagram showed that the decomposition of jarosite leads to a goethite compound (FeO·OH) together with Rb+ and \( {\text{SO}}_{4}^{2 - } \) ions. The experimental Rb-jarosite decomposition was carried out in alkaline solutions with five different Ca(OH)2 concentrations. The decomposition process showed a so-called “induction period” followed by a progressive conversion period where Rb+ and \( {\text{SO}}_{4}^{2 - } \) ions formed in the aqueous solutions, whereas calcium was incorporated in the solid residue and iron gave way to goethite. The kinetic analysis showed that this process can be represented by the shrinking core chemically controlled model with a reaction order with respect to Ca(OH)2 equals 0.4342 and the calculated activation energy is 98.70 kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. BECKMAN COULTER is a trademark of Beckman Coulter, Inc., Fullerton, CA.

  2. BRUKER is a trademark of Bruker-Physik Ag, Silberstreifen, DE.

  3. JEOL is a trademark of JEOL LTD, Tokyo, Japan.

Abbreviations

A:

rate constant

C A :

concentration of reactant

C p :

heat capacity

E :

activation energy

G298.15 :

standard Gibbs free energy at 298 K (25 °C)

∆Gf,298.15 :

Gibbs free energy of formation at 298 K (25 °C)

H 298.15 :

standard enthalpy at 298 K (25 °C)

H f,298.15 :

enthalpy of formation at 298 K (25 °C)

Kexp :

experimental rate constant

Kq :

chemical rate constant

M:

molarity (mol L–1)

n :

reaction order

[OH]:

concentration of OH ion

R:

gas constant (8.314 J mol–1K–1)

r 0 :

initial radius of particle

S 298.15 :

standard entropy at 298 K (25 °C)

S f,298.15 :

entropy of formation at 298 K (25 °C)

T :

absolute temperature (K)

t :

time

V :

molar volume

X S :

fraction of sulfur converted into product

ρ :

density

θ :

induction time

v :

stoichiometric coefficient

σ :

standard deviation

τ :

time for the complete reaction of a particle

References

  1. J.E. Dutrizac and S. Kaiman: Can. Miner., 1976, vol. 14, pp. 151–58.

    Google Scholar 

  2. A.Z. Hrynkiewicz, J. Kubisz, and D.S. Kulgawczuk: J. Inorg. Nucl. Chem., 1965, vol. 27, pp. 2513–17.

    Article  CAS  Google Scholar 

  3. J. Kubisz: Mineral. Polonica, 1970, vol. 1, pp. 47–59.

    CAS  Google Scholar 

  4. S.B. Hendricks: Am. Mineral, 1937, vol. 22, pp. 773–84.

    CAS  Google Scholar 

  5. G.P. Brophy and M.F. Sheridan: Am. Mineral, 1965, vol. 50, pp. 1595–1607.

    CAS  Google Scholar 

  6. C.L. Lengauer, G. Giester, and E. Irran: Powder Diffr., 1994, vol. 9, pp. 265–71.

    CAS  Google Scholar 

  7. J.E. Dutrizac and T.T. Chen: Can. Miner., 1981, vol. 19, pp. 559–69.

    CAS  Google Scholar 

  8. J.E. Dutrizac, D.J. Hardy, and T.T. Chen: Hydrometallurgy, 1996, vol. 41, pp. 269–85.

    Article  CAS  Google Scholar 

  9. J.E. Dutrizac and T.T. Chen: Can. Metall. Q., 2000, vol. 39, pp. 1–14.

    CAS  Google Scholar 

  10. J.E. Dutrizac and S. Kaiman: Hydrometallurgy, 1975, vol. 1, pp. 51–59.

    Article  CAS  Google Scholar 

  11. J.G. Fairchild: Am. Mineral, 1933, vol. 18, pp. 543–47.

    CAS  Google Scholar 

  12. A. May, J.J. Sjoberg, and E.G. Baglin: Am. Mineral, 1973, vol. 58, pp. 936–41.

    CAS  Google Scholar 

  13. M. Cruells, A. Roca, F. Patiño, E. Salinas, and I. Rivera: Hydrometallurgy, 2000, vol. 55, pp. 153–63.

    Article  CAS  Google Scholar 

  14. E. Salinas, A. Roca, M. Cruells, F. Patiño, and D.A. Córdoba: Hydrometallurgy, 2001, vol. 60, pp. 237–46.

    Article  CAS  Google Scholar 

  15. F. Patiño, M. Cruells, A. Roca, E. Salinas, and M. Pérez: Hydrometallurgy, 2003, vol. 70, pp. 153–61.

    Article  Google Scholar 

  16. J. Viñals, C. Nuñez, and J. Carrasco: Hydrometallurgy, 1990, vol. 26, pp. 179–99.

    Article  Google Scholar 

  17. A. Roca, F. Patiño, F.J. Viñals, and C. Núñez: Hydrometallurgy, 1993, vol. 33, pp. 341–58.

    Article  CAS  Google Scholar 

  18. F. Patiño, J. Viñals, A. Roca, and C. Núñes: Hydrometallurgy, 1994, vol. 34, pp. 279–91.

    Article  Google Scholar 

  19. W.T. Thompson, C.W. Bale, and A.D. Pelton: Facility for the Analysis of Chemical Thermodynamics (FACTSage), Ecole Polytechnique, Montreal, 2010, http://www.crct.polymtl.ca.

  20. D.R. Lide: CRC Handbook of Chemistry and Physics. 71st ed., CRC Press, Boca Raton, FL, 1990–1991, pp. 8–38.

  21. J. Majzlan, P. Glasnak, R.A. Fisher, M.A. White, M.B. Johnson, B. Woodfield, and J. Boerio-Goates: Phys. Chem. Minerals, 2010, vol. 37, pp. 635–51.

    Article  CAS  Google Scholar 

  22. I. Barin: Thermochemical Data of Pure Substances, VCH, Verlagsgesellschaft, Germany, 1989.

  23. S. Gaboreau and P. Vieillard: Geochim. Cosmochim. Acta., 2004, vol. 68, pp. 3307–16.

    Article  CAS  Google Scholar 

  24. H.E. Barner and R.V. Scheverman: Handbook of Thermochemical Data for Compounds and Aqueous Species, Wiley-Interscience, New York, NY, 1978.

  25. C.H. Gammons: Mine Water Environ., 2006, vol. 25, pp. 114–23.

    Article  CAS  Google Scholar 

  26. J. Zhao, F.E. Huggins, Z. Feng, and G.P. Huffman: Clay Clay Miner., 1994, vol. 42, pp. 737–46.

    CAS  Google Scholar 

  27. Y. Cudennec and A. Lecerf: J. Solid State Chem., 2006, vol. 179, pp. 716–22.

    Article  CAS  Google Scholar 

  28. O. Levenspiel: Chemical Reaction Engineering, Wiley, New York, NY, 1962.

Download references

Acknowledgments

The authors wish to thank the Academic Area of Earth Science and Materials (AACTyM) UAEH for their assistance in the laboratory work, as well as the institutions IPN, COFAA, and SNI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Perez-Labra.

Additional information

Manuscript submitted June 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Labra, M., Romero-Serrano, A., Salinas-Rodriguez, E. et al. Synthesis, Thermodynamic, and Kinetics of Rubidium Jarosite Decomposition in Calcium Hydroxide Solutions. Metall Mater Trans B 43, 773–780 (2012). https://doi.org/10.1007/s11663-011-9601-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9601-7

Keywords

Navigation