Skip to main content

The Hydrothermal Reaction and Kinetic of Enargite

  • Conference paper
  • First Online:
Extraction 2018

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 147 Accesses

Abstract

The stoichiometry and kinetics of the hydrothermal reaction of enargite in copper sulphate solutions was investigated in the range 140–300 °C, and particle size under 15 and 50 µm. The stoichiometric experiment was performed at 300 °C, using one gram of sample (96% enargite , 4% tennantite) and 100 mL of copper sulphate solution (10 gpl) at 1.2 pH. Enargite reacted completely after 80 min. A solid product was obtained and characterized by XRD . The main product was chalcocite (M) and some traces of djurleite and chalcocite (Q). Tennantite did not react under these conditions. The kinetic experiments were conducted at 140 °C, 190 °C, 250 °C and 300 °C. From fitted data and Arrhenius equation the calculated activation energy (Ea) was 51 kJ/mol. According to the hydrothermal transformations studied, the reactivity of different phases found in the copper concentrates was bornite > chalcopyrite  > covellite > sphalerite  > pyrite > enargite  > tennantite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viñals J et al (2003) Topochemical transformation of enargite into copper oxide by hypochlorite leaching. Hydrometallurgy 68(1–3):183–193

    Article  Google Scholar 

  2. Dutrizac J, Mac Donald R (1972) The kinetics of dissolution of enargite in acidified ferric sulphate solutions. Can Metall Q 11(3):469–476

    Article  CAS  Google Scholar 

  3. Herreros O, Fuentes G, Quiroz R, Viñals J (2003) Lixiviación de concentrados de cobre con alto contenido de arsénico en medio cloro/cloruro. Revista de Metalurgia 39:90–98 (in spanish)

    Article  CAS  Google Scholar 

  4. Curreli L et al (2005) Beneficiation of a gold bearing enargite ore by flotation and As leaching with Na hypochlorite. Miner Eng 18(8): 849–854

    Article  CAS  Google Scholar 

  5. Gajam S, Raghavan S (1983) A kinetic study of enargite dissolution in ammoniacal solutions. Int J Miner Process 10:113–129

    Article  CAS  Google Scholar 

  6. Riveros P, Dutrizac J, Spencer P (2001) Arsenic disposal practices in the metallurgical industry. Can Metall Q 40(4):395–420

    Article  CAS  Google Scholar 

  7. Riveros P, Dutrizac J (2008) The leaching of tennatite, tetrahedrite and enargite in acidic sulphate and chloride media. Can Metall Q 47(3):235–244

    Article  CAS  Google Scholar 

  8. Padilla R, Rivas C, Ruiz MC (2008) Kinetics of pressure dissolution of enargite in sulphate-oxygen media. Metall Mater Trans B 39(3):399–407

    Article  Google Scholar 

  9. Ruiz MC, Vera M, Padilla R (2011) Mechanism of enargite pressure leaching in the presence of pyrite. Hydrometallurgy 105(3–4) (January): 290–295. https://doi.org/10.1016/j.hydromet.2010.11.002

    Article  CAS  Google Scholar 

  10. Padilla R, Jerez O, Ruiz MC (2015) Kinetics of the pressure leaching of enargite in FeSO4-H2SO4-O2 media. Hydrometallurgy 158:49–55

    Article  CAS  Google Scholar 

  11. Watling H (2006) The bioleaching of sulfide minerals with emphasis on copper sulfides-a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  12. Escobar B, Huenupi E, Godoy I, Wiertz J (2000) Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70 °C. Biotechnol Lett 19(8):719–722

    Google Scholar 

  13. Muñoz J et al (2006) Electrochemical study of enargite bioleaching by mesophilic and thermophilic microorganisms. Hydrometallurgy 84(3–4):175–186

    Article  Google Scholar 

  14. Kimberley C, Anderson C (2013) Enargite treatments and pressure oxidation of concentrates. J Metall Eng (ME) 2(4):115–123

    Google Scholar 

  15. Safarzadeh S et al (2014) Recent trends in the processing of enargite concentrates. Miner Process Extr Metall Rev 35(5):283–367. https://doi.org/10.1080/08827508.2012.723651

    Article  CAS  Google Scholar 

  16. Viñals J, Fuentes G, Hernandez MC, Herreros O (2004) Transformation of sphalerite particles into copper sulfide particles by hydrothermal treatment with Cu(II) ions. Hydrometallurgy 75:177–187

    Article  Google Scholar 

  17. Fuentes G, Viñals J, Herreros O (2009) Hydrothermal purification and enrichment of Chilean copper concentrates. Part 2: The behaviour of the bulk concentrates. 95:113–120

    Article  CAS  Google Scholar 

  18. Jang JH, Wadsworth ME (1994) Kinetics of hydrothermal enrichment of chalcopyrite, vol 550. ACS Symposium Series, pp 45–58

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank to the support of the “Serveis Cientifico-Technics of the Universitat de Barcelona” and Mrs. E. Vilalta in the characterization studies is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuentes, G. (2018). The Hydrothermal Reaction and Kinetic of Enargite. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_133

Download citation

Publish with us

Policies and ethics