Skip to main content
Log in

Fracture Surface Facets and Fatigue Life Potential of Castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fatigue potential has been studied in cast aluminum alloys with regard to the fatigue crack initiation mechanism at the casting defects, particularly surface and subsurface defects. The significance of facets is interpreted as the presence of defects in the interior of castings. Furthermore, two varieties of facets have been identified, one originating as a dendrite-straightened bifilm (type I facet) and the other originating from a slip plane mechanism around casting defects (type II facet). The fatigue life potential of castings is reexamined based on the involvement of defects during the formation of both types of facets. It is proposed that the true fatigue life potential of defect free castings has yet to be observed, i.e., if castings can be produced without defects, then their fatigue performance will be significantly higher than even the best performances observed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.E. Dieter: Mechanical Metallurgy, McGraw Hill, Columbus, OH, 1986, p. 375.

    Google Scholar 

  2. C. Nyahumwa, N.R. Green, and J. Campbell: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 349-58.

    Article  CAS  Google Scholar 

  3. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 85-97.

    Article  Google Scholar 

  4. Y.H. Jang, S.U. Jin, Y.I. Jeong, and S.S. Kim: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1579-87.

    Article  CAS  Google Scholar 

  5. E. Bayraktar, I.M. Garcias, and C. Bathias: Int. J. Fatigue, 2006, vol. 28, pp. 1590-602.

    Article  CAS  Google Scholar 

  6. J.H. Bulloch: Theor. Appl. Fract. Mech., 1995, vol. 24, pp. 65-78.

    Article  CAS  Google Scholar 

  7. J. Yang and S.K. Putatunda: Mater. Sci. Eng. A, 2005, vol. A393, pp. 254-68.

    CAS  Google Scholar 

  8. G.L. Greno, J.L. Otegui, and R.E. Boeri: Int. J. Fatigue, 1999, vol. 21, pp. 35-43.

    Article  CAS  Google Scholar 

  9. M.F. Horstemeyer, N. Yang, K. Gall, D.L. McDowell, J. Fan, and P.M. Gullett: Acta Mater., 2004, vol. 52, pp. 1327-36.

    Article  CAS  Google Scholar 

  10. L. Kunz, P. Lukáš, and R. Konečná: Eng. Fract. Mech., 2010, vol. 77, pp. 2008-15.

    Article  Google Scholar 

  11. L. Kunz, P. Lukáš, and R. Konečná: Int. J. Fatigue, 2010, vol. 32, pp. 908-13.

    Article  CAS  Google Scholar 

  12. D. Gelmedin and K.-H. Lang: Proc. Eng., 2010, vol. 2, pp. 1343–52.

  13. C.E. Price: Metallography, 1984, vol. 17, pp. 359-70.

    Article  CAS  Google Scholar 

  14. C. Nyahumwa, N.R. Green, and J. Campbell: J. Mech. Behav. Mater., 1998, vol. 9, no. 4, pp. 227-35.

    Article  CAS  Google Scholar 

  15. Q.G. Wang, C.J. Davidson, J.R. Griffiths, and P.N. Crepeau: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 887-95.

    Article  CAS  Google Scholar 

  16. J. Campbell: Metall. Mater. Trans. A, 2010, vol. 41A, p.18.

    Article  CAS  Google Scholar 

  17. J. Campbell: Castings, 2nd ed., Elsevier, Oxford, UK, 2003..

    Google Scholar 

  18. M. Cox, M. Wickins, J.P. Kuang, R.A. Harding, and J. Campbell: Mater. Sci. Tech., 2000, vol. 16, pp. 1445–52 with additional personal communications from Cox reported in pp. 57–61 of Reference 18

    Article  CAS  Google Scholar 

  19. C.W.M. Nyahumwa: Ph.D. Dissertation, University of Birmingham, UK, 1997.

  20. P.A.S. Reed: Mater. Sci. Technol., 2009, vol. 25, pp. 258-70.

    Article  CAS  Google Scholar 

  21. A.D. Boyd-Lee: Int. J. Fatigue, 1999, vol. 21, pp. 393-405.

    Article  CAS  Google Scholar 

  22. C. Laird: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., Elsevier, Atlanta, GA, 1996, vol. 3, pp. 2379.

  23. A. Borbely, H. Mughrabi, G. Eisenmeier, and H.W. Höppel: Int. J. Fracture, 2002, vol. 155, pp. 227-32.

    Article  Google Scholar 

  24. J.T. Staley, Jr., M. Tiryakioğlu, and J. Campbell: Mater. Sci. Eng. A, 2007, vol. 465, pp. 136-45.

    Article  Google Scholar 

  25. O. Umezawa, K. Nagai, and K. Ishikawa: Tetsu to Hagane, 1989, vol. 75, pp. 159-66.

    CAS  Google Scholar 

  26. H. Mughrabi: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 755-64.

    Article  Google Scholar 

  27. K. Sadananda, A.K. Vasudevan, and N. Phan: Int. J. Fatigue, 2007, vol. 29, pp. 2060-71.

    Article  CAS  Google Scholar 

  28. C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, and D.L. McDowell: Int. J. Fatigue, 2010, vol. 32, pp. 512-25.

    Article  CAS  Google Scholar 

  29. Y. Nakamura, T. Sakai, H. Hirano, and K.S. Ravi Chandran: Int. J. Fatigue, 2010, vol. 32, pp. 621-26.

    Article  CAS  Google Scholar 

  30. C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 559-65.

    Article  CAS  Google Scholar 

  31. Q.Y. Wang, J.Y. Berard, A. Dubarre, G. Baudry, S. Rathery, and C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 667-72.

    CAS  Google Scholar 

  32. O. Umezawa and K. Nagai: ISIJ Int., 1997, vol. 37, pp. 1170-79.

    Article  CAS  Google Scholar 

  33. B. Skallerud, T. Iveland, and G. Härkegård: Eng. Fract. Mech., 1993, vol. 44, pp. 857-74.

    Article  Google Scholar 

  34. S.A. Barter, L. Molent, N. Goldsmith, and R. Jones: J. Eng. Fail. Anal., 2005, vol. 12, pp. 99-128.

    Article  Google Scholar 

  35. B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, D.G. Hay, W.J. Evans, G. Clark, and A.J. Stonham: Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, pp. 795-808.

    Article  CAS  Google Scholar 

  36. J.T. Staley, Jr., M. Tiryakioğlu, and J. Campbell: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 324-34.

    Google Scholar 

  37. K. Tokaji, M. Kamakura, Y. Ishiizumi, and N. Hasegawa: Int. J. Fatigue, 2004, vol. 26, pp. 1217-24.

    Article  CAS  Google Scholar 

  38. K. Tokaji, J.C. Bian, T. Ogawa, and M. Nakajima: Mater. Sci. Eng. A, 1996, vol. A213, pp. 86-92.

    CAS  Google Scholar 

  39. K. Tokaji, K. Ohya, and H. Kariya: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 759-66.

    Article  CAS  Google Scholar 

  40. M. Tiryakioğlu and J. Campbell: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3121-29.

    Article  Google Scholar 

  41. C.A. Johnson: Fract. Mech. Ceram., 1983, vol. 5, pp. 365-86.

    Article  Google Scholar 

  42. J.Z. Yi, Y.X. Gao, P.D. Lee, H.M. Flower, and T.C. Lindley: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1879-90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Tiryakioğlu.

Additional information

Manuscript submitted May 20, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiryakioğlu, M., Campbell, J. & Nyahumwa, C. Fracture Surface Facets and Fatigue Life Potential of Castings. Metall Mater Trans B 42, 1098–1103 (2011). https://doi.org/10.1007/s11663-011-9577-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9577-3

Keywords

Navigation