Skip to main content
Log in

Multiscale Modeling of Transport Phenomena and Dendritic Growth in Laser Cladding Processes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A multiscale model is developed in this article to investigate the transport phenomena and dendrite growth in the diode-laser-cladding process. A transient model with an improved level-set method is built to simulate the heat/mass transport and the dynamic evolution of the molten pool surface on the macroscale. A novel model integrating the cellular automata (CA) and phase field (PF) methods is used to simulate the dendritic growth of multicomponent alloys in the mushy zone. The multiscale model is validated against the experiments, and the predicted geometry of clad tracks and the predicted dendrite arm spacing of microstructure match reasonably well with the experimental results. The effects of the processing parameters on the track geometry and microstructure are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Costa, R. Vilar, T. Reti, and A.M. Deus: Acta Mater., 2005, vol. 53, pp. 3987-99.

    Article  CAS  Google Scholar 

  2. L. Wang and S. Felicelli: J. Manuf. Sci. Eng.-Trans. ASME, 2007, vol. 129, pp. 1028-34.

    Article  Google Scholar 

  3. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2228-36.

    Article  CAS  Google Scholar 

  4. S. Kumar, S. Roy, C.P. Paul, and A.K. Nath: Numer. Heat Tran. B, 2008, vol. 53, pp. 271-87.

    Article  CAS  Google Scholar 

  5. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet: J. Phys. D, 2008, vol. 41, 025403.

    Article  Google Scholar 

  6. L. Han, F.W. Liou, and K.M. Phatak: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1139-50.

    Article  CAS  Google Scholar 

  7. J. Choi, L. Han, and Y. Hua: J. Heat Transfer-Trans. ASME, 2005, vol. 127, pp. 978-86.

    Article  CAS  Google Scholar 

  8. H.O. Zhang, F.R. Kong, G.L. Wang, and L.F. Zeng: J. Appl. Phys., 2006, vol. 100, pp. 123522.

    Article  Google Scholar 

  9. H. Qi, J. Mazumder, and H. Ki: J. Appl. Phys., 2006, vol. 100, pp. 024903.

    Article  Google Scholar 

  10. X. He and J. Mazumder: J. Appl. Phys., 2007, vol. 101, pp. 053113.

    Article  Google Scholar 

  11. S. Wen and Y.C. Shin: J. Appl. Phys., 2010, vol. 108, pp. 044908.

    Article  Google Scholar 

  12. S. Wen and Y.C. Shin: J. Heat Transfer-Trans. ASME, 2011, vol. 133, pp. 031007.

    Article  Google Scholar 

  13. A.F.A. Hoadley and M. Rappaz: Metall. Trans. B, 1992, vol. 23B, pp. 631-42.

    Article  CAS  Google Scholar 

  14. S. Ghosh and J. Choi: J. Manuf. Sci. Eng.-Trans. ASME, 2007, vol. 129, pp. 319-32.

    Article  Google Scholar 

  15. Z. Yang, S. Sista, J.W. Elmer, and T. DebRoy: Acta Mater., 2000, vol. 48, pp. 4813-25.

    Article  CAS  Google Scholar 

  16. T. Koseki, H. Inoue, Y. Fukuda, and A. Nogami: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 183-95.

    Article  CAS  Google Scholar 

  17. V. Pavlyk and U. Dilthey: Model. Simulat. Mater. Sci. Eng., 2004, vol. 12, pp. S33-45.

    Article  CAS  Google Scholar 

  18. X.H. Zhan, Z.B. Dong, Y.H. Wei,and R. Ma: J. Cryst. Growth, 2009, vol. 311, pp. 4778-83.

    Article  CAS  Google Scholar 

  19. H. Yin and S.D. Felicelli: Acta Mater., 2010, vol. 58, pp. 1455-65.

    Article  CAS  Google Scholar 

  20. Y. Cao and J. Choi: J. Heat Transfer-Trans. ASME, 2007, vol. 129, pp. 852-63.

    Article  Google Scholar 

  21. A. Farzadi, M. Do-Quang, S. Serajzadeh, A. Kokabi, and G. Amberg: Model. Simulat. Mater. Sci. Eng., 2008, vol. 16, pp. 065005.

    Article  Google Scholar 

  22. B. Böttger, M. Apel, J. Eiken, P. Schaffnit, and I. Steinbach: Steel Res. Int., 2008, vol. 79, pp. 608-16.

    Google Scholar 

  23. W. Tan, N.S. Bailey, and Y.C. Shin: Comp. Mater. Sci., 2011, vol. 50 (9), pp. 2573–85.

    Article  CAS  Google Scholar 

  24. W. Wang, P.D. Lee, and M. McLean: Acta Mater., 2003, vol. 51, pp. 2971-87.

    Article  CAS  Google Scholar 

  25. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1999, vol. 60, pp. 7186-97.

    Article  CAS  Google Scholar 

  26. P.R. Cha, D.H. Yeon, and J.K. Yoon: J. Cryst. Growth, 2005, vol. 274, pp. 281-93.

    Article  CAS  Google Scholar 

  27. R. Zhang, T. Jing, W. Jie, and B. Liu: Acta Mater., 2006, vol. 54, pp. 2235-39.

    Article  CAS  Google Scholar 

  28. X. He, P.W. Fuerschbach, and T. DebRoy: J. Phys. D, 2003, vol. 36, pp. 1388-98.

    Article  CAS  Google Scholar 

  29. W. Tan, N.S. Bailey, and Y.C. Shin: ASME Int. Conf. Manuf. Sci. Eng., 2011, pp. 50219.

  30. W. Löser and D.M. Herlach: Metall. Trans. A, 1992, vol. 23A, pp. 1585-91.

    Google Scholar 

  31. S.G. Kim and W.T. Kim: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 281-86.

    Google Scholar 

  32. J. Miettinen: CALPHAD, 1999, vol. 23, pp. 231-48.

    Article  CAS  Google Scholar 

  33. J. Miettinen: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 365-79.

    Article  CAS  Google Scholar 

  34. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237-45.

    Article  CAS  Google Scholar 

  35. J. Choi and Y. Chang: Int. J. Mach. Tool. Manufact., 2005, vol. 45, pp. 597-607.

    Article  Google Scholar 

  36. D.R. Poirier and J.C. Heinrich: Mater. Charact., 1994, vol. 32, pp. 287-98.

    Article  CAS  Google Scholar 

  37. C. Beckermann, J.P. Gu, and W.J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2545-57.

    Article  CAS  Google Scholar 

  38. S.N. Tewari and R. Tiwari: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2365-76.

    Article  CAS  Google Scholar 

  39. P.A. Kobryn, E.H. Moore, and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 299-305.

    Article  CAS  Google Scholar 

  40. S. Katayama and A. Matsunawa: Proc. ICALEO, 1984, pp. 60–67.

  41. J. Song, Q. Deng, C. Chen, D. Hu, and Y. Li: Appl. Surf. Sci., 2006, vol. 252, pp. 7934-40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge gratefully the financial support provided for this study by the National Science Foundation (grants 0538786-IIP and 0917936-IIP), the State of Indiana through the 21st Century R&T Fund, and Industrial Consortium members of the Center for Laser-based Manufacturing. The authors also wish to thank Mr. Kevin Schoeffel for the help in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung C. Shin.

Additional information

Manuscript submitted March 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W., Wen, S., Bailey, N. et al. Multiscale Modeling of Transport Phenomena and Dendritic Growth in Laser Cladding Processes. Metall Mater Trans B 42, 1306–1318 (2011). https://doi.org/10.1007/s11663-011-9545-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9545-y

Keywords

Navigation