Skip to main content
Log in

Wettability of Aluminum on Alumina

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10−8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. ALLTECH is the trademark of Alltech Associated, Inc., 2051 Waukegan Road, Deerfield, IL 60015-1899.

  2. RAPIDOX 2100 is a zirconia oxygen gas analyzer from Cambridge Sensotec Limited, 31 Elizabeth Court, St Ives, CAMBS PE27 5BQ, United Kingdom.

References

  1. H. John and H. Hausner: J. Mater. Sci. Lett., 1986, vol. 5, pp. 549-51.

    Article  CAS  Google Scholar 

  2. A.J. Klinter, G. Mendoza-Suarez, and R.A.L. Drew: Mater. Sci. Eng. A, 2008, vol. 495, no. 1–2, pp. 147–52.

    Google Scholar 

  3. D.-J. Wang and S.-T. Wu: Acta Metall. Mater., 1994, vol. 42, no. 12, pp. 4029-34.

    Article  CAS  Google Scholar 

  4. Yu.V. Naidich, Yu. N. Chubashov, N.F. Ishchuk, and V.P. Krasoskii: Sov. Powder Metall. Met. Ceram., 1983, vol. 2, pp. 481-83.

    Article  Google Scholar 

  5. M. Ksiazek, N. Sobczak, B. Mikulowski, W. Radziwill, and I. Surowiak: Mater. Sci. Eng. A, 2002, vol. A324, pp. 162-67.

    CAS  Google Scholar 

  6. P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: Scripta Mater., 2003, vol. 48, pp. 779-84.

    Article  CAS  Google Scholar 

  7. S.M. Wolf, A.P. Levitt, and J. Brown: Chem. Eng. Progr., 1966, vol. 62, no. 3, pp. 74-78.

    CAS  Google Scholar 

  8. R.D. Carnahan, T.L. Johnston, and C.H. Li: J. Am. Ceram. Soc., 1958, vol. 41, no. 9, pp. 343-47.

    Article  CAS  Google Scholar 

  9. J.J. Brennan and J.A. Pask: J. Am. Ceram. Soc., 1968, vol. 51, pp. 569-73.

    Article  CAS  Google Scholar 

  10. M. Nicholas: J. Mater. Sci., 1968, vol. 3, pp. 571-76.

    Article  CAS  Google Scholar 

  11. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos: Acta Metall. Mater., 1988, vol. 36, no. 7, pp. 1797-1803.

    Article  CAS  Google Scholar 

  12. S. Bao, A. Kvithyld, G. Sean, T.A. Engh, and M. Tangstad: Wetting of Pure Aluminium on Filter Materials Graphite, AlF3 and Al2O3. Light Metals, 138th TMS Annual Meeting and Exhibition, San Francisco, CA, 2009, pp. 767–73.

  13. N.B.O. Standards: JANAF Thermochemical Tables, 2nd ed., vol. 37, 1971.

  14. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon, Amsterdam, The Netherlands, 1999, vol. 17, p. 420.

  15. L. Coudurier, J. Adorian, D. Pique, and N. Eustathopoulos, Etude de la mouillabilité par I’aluminium liquide de I’alumine et de I’alumine recouverte d’une couche de métal ou de composé réfractaire, Revue internationale des hautes températures et des réfractaires, 1984, vol. 21 (2), pp. 81–93.

  16. J. Gaydos and A. Neumann: J. Colloid Interf. Sci., 1987, vol. 120, no. 1, pp. 76-86.

    Article  CAS  Google Scholar 

  17. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, no. 2, pp. 59-82.

    Article  CAS  Google Scholar 

  18. K.C. Mills and Y.C. Su: Int. Mater. Rev., 2006, vol. 51, no. 6, pp. 329-51.

    Article  CAS  Google Scholar 

  19. S. Takematsu, T. Mizuguchi, H. Nakashima, K. Ikeda, and H. Abe: J. Jpn. Ceram. Soc., 2004, vol. 112, no. 1, pp. 46-49.

    Article  CAS  Google Scholar 

  20. L.A. Girifalco and R.J. Good: J. Phys. Chem., 1957, vol. 61, no. 7, pp. 904-09.

    Article  CAS  Google Scholar 

  21. P. Nikolopoulos, S. Agathopoulos, and A. Tsoga: J. Mater. Sci., 1994, vol. 29, no. 16, pp. 4393-98.

    Article  CAS  Google Scholar 

  22. H. Chang, R. Higginson, and J. Binner: J. Mater. Sci., 2010, vol. 45, no. 3, pp. 662-68.

    Article  CAS  Google Scholar 

  23. N. Keegan, W. Schneider, and H. Krug: J. Light Met., 1999, pp. 1031–41.

  24. H. Chang, R. Higginson, and J. Binner: J. Microsc., 2009, vol. 233, no. 1, p. 132-39.

    Article  CAS  Google Scholar 

  25. R. Higginson, H. Chang, and J. Binner: Mater. Sci. Forum, 2006, vol. 519–521, pp. 1279–84.

    Article  Google Scholar 

Download references

Acknowledgment

This research was carried out as part of the Norwegian Research Council (NRC) funded BIP Project (No. 179947/I40) Remelting and Inclusion Refining of Aluminum (RIRA). It includes the following partners: Hydro Aluminum AS, SAPA Heat Transfer AB, Alcoa Norway ANS, NTNU, and Sintef. Funding by the industrial partners and NRC is acknowledged gratefully. Thanks are also given to Tone Anzjøn for assisting in the sessile drop tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merete Tangstad.

Additional information

Manuscript submitted January 3, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, S., Tang, K., Kvithyld, A. et al. Wettability of Aluminum on Alumina. Metall Mater Trans B 42, 1358–1366 (2011). https://doi.org/10.1007/s11663-011-9544-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9544-z

Keywords

Navigation