Skip to main content
Log in

Effect of the Delay in Time Between Cooling and Aging in Heat-Treated Cast Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The mechanical properties of cast aluminum alloys can be affected by the delay in time involved between the stages of rapid cooling after solubilization (quenching) and aging. This effect was studied on samples from three different Al-Si alloys that were cast with a wide range of microstructures. It was found that the parameter that exerts the highest influence on the mechanical properties is the degree of microstructural refining, which is referred to dendrite arm spacing, as a finer structure enhances the strength and ductility. It was found that the yield strength and total elongation, and to a lesser extend the ultimate tensile strength, are affected by the delay in time. The material that was treated to the peak-aged condition was found to be more susceptible to the reduction in mechanical properties with the increase in the delay in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.B. Heywood: Internal Combustion Engine Fundamentals, McGraw-Hill, New York, NY, 1989.

  2. P.M. Norris, M.C. Hastings, and W.J. Wepfer: J. Exp. Heat Trans., 1994, vol. 7, pp. 43-51.

    Google Scholar 

  3. I.J. Polmear: Light Alloys, Metallurgy of the Light Metals, Arnold, London, U.K., 1980.

  4. J.W. Martin (1980) Micromechanisms in Particle Hardened Alloys, Cambridge University Press. Cambridge, U.K.

    Google Scholar 

  5. C.R. Brooks (1982) Heat Treatment, Structure and Properties of Nonferrous Alloys, ASM, Materials Park. OH.

    Google Scholar 

  6. J. Campbell: Castings, 2nd ed., Butterworth-Heinemann, Oxford, U.K., 2003.

  7. R. Colás, E. Velasco, and S. Valtierra: in Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, G.E. Totten and D.S. MacKenzie, eds., Marcel Dekker, New York, NY, 2003, pp. 591–641.

  8. E. Sjölander and S. Seifeddine: J. Mater. Process. Tech., 2010, vol. 210, pp. 1249-59.

    Article  Google Scholar 

  9. S. Das and U. Chandra: in Residual Stress and Distortion, Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, G.E. Totten and D.S. MacKenzie, eds., Marcel Dekker, New York, NY, 2003, pp. 305–49.

  10. A.I. García-Celis, E. Velasco, S. Valtierra, J.F. Mojica, and R. Colás: Automotive Alloys II, S. Das, ed., TMS, Warrendale, PA, 1998, pp. 135–43.

  11. J.L. Cavazos and R. Colás: J. Mater. Eng. Perform., 1999, vol. 8, pp. 509-12.

    Article  CAS  Google Scholar 

  12. J.L. Cavazos and R. Colás: Mater. Charact., 2001, vol. 47, pp. 175-79.

    Article  CAS  Google Scholar 

  13. B. Xiao, Q. Qang, P. Jadhav, and K. Li: J. Mater Process. Tech., 2010, vol. 210, pp. 2023-28.

    Article  CAS  Google Scholar 

  14. B. Xiao, Y. Ront, Q. Wang, G. Wang, M. Maniruzzaman, and R.D. Sisson: J. Mater. Eng. Perform., 2010, vol. 210, pp. 2023–2208.

    CAS  Google Scholar 

  15. F.J. Tavitas-Moreno, J.E. Gurzleski, F.H. Samuel, S. Valtierra, and H.W. Doty: Mater. Sci. Eng. A, 2008, vol. A480, pp. 356-68.

    Google Scholar 

  16. Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra: Mater. Sci. Eng. A, 2008, vol. A490, pp. 36-51.

    CAS  Google Scholar 

  17. L. Bäckerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys, AFS, Des Plains, IL, 1990.

  18. L. Arnbert, L. Bäckerud, and G. Chai: Solidification Characteristics of Aluminum Alloys, Vol. 3: Dendritic Coherency, AFS, Des Plains, IL, 1996.

  19. R. Colás, A. Rodríguez, J. Talamantes, and S. Valtierra: Int. J. Cast Metal. Res., 2004, vol. 17, pp. 332-38.

    Article  Google Scholar 

  20. R. Torres, J. Esparza, E. Velasco, S. García-Luna, and R. Colás: Int. J. Microstruct. Mater. Prop., 2006, vol. 1, pp. 129-38.

    CAS  Google Scholar 

  21. ASTM B557M-94, Standard Test Methods of Tension Testing Wrought and Cast Aluminum and Magnesium Alloy Products (Metric), ASTM International, West Conshohocken, PA, 1994.

  22. ASTM E8M-99, Standard Test Methods for Tension Testing of Metallic Materials (Metric), ASTM International, West Conshohocken, PA, 1999.

  23. T. Din, A.K.M.B. Rashid, and J. Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 269-75.

    CAS  Google Scholar 

  24. C.H. Caceres, T. Din, A.K.M.B. Rashid, and J. Campbell: Mater. Sci. Technol., 1999, vol. 12, pp. 711-16.

    Google Scholar 

  25. C.H. Caceres: J. Mater. Eng. Perform., 2000, vol. 9, pp. 215-21.

    Article  CAS  Google Scholar 

  26. C.H. Caceres, M. Makhlouf, D. Apelian, and L. Wang: J. Light Met., 2001, vol. 1, pp. 51-59.

    Article  Google Scholar 

  27. N.D. Alexopoulos and S.G. Pantelakis: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 301-08.

    Article  CAS  Google Scholar 

  28. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, H.W. Doty, and S. Valtierra: Mater. Sci. Eng. A, 2004, vol. 367, pp. 96-110.

    Article  Google Scholar 

  29. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, H.W. Doty, and S. Valtierra: Mater. Sci. Eng. A, 2004, vol. 367, pp. 111-22.

    Article  Google Scholar 

  30. J.A. Taylor, D.H. St. John, J. Barresi, and M.J. Cooper: Int. J. Cast Metal. Res., 2000, vol. 12, pp. 277-82.

    Google Scholar 

  31. Z. Li, A.M. Samuel, F.H. Ravindran, and S. Valtierra: J. Mater. Sci., 2003, vol. 38, pp. 1203-18.

    Article  CAS  Google Scholar 

  32. Y.M. Han, A.M. Samuel, F.H. Samuel, S. Valtierra, and H.W. Doty: AFS Trans., 2008, vol. 116, pp. 79-90.

    CAS  Google Scholar 

  33. E. Sjölander and S. Seifeddine: Mater. Des., 2010, vol. 31, pp. 544-49.

    Article  Google Scholar 

  34. A.A. Canales, J. Talamantes-Silva, D. Gloria, S. Valtierra, and R. Colás: Thermochim. Acta, 2010, vol. 510, pp. 82-87.

    Article  CAS  Google Scholar 

  35. J.A. Taylor, D.H. St. John, J. Barresi, and M.J. Couper: Mater. Sci. Forum, 2000, vols. 331–337, pp. 277-82.

    Article  Google Scholar 

  36. H- Möller, G. Govender, and W.E. Stump: Int. J. Cast. Metal. Res., 2007, vol. 20, pp. 340–46.

  37. A. Cuniberti, A. Tolley, M.V. Castro Riglos, and R. Giovachini: Mater. Sci. Eng. A, 2010, vol. 537, pp. 5307-11.

    Google Scholar 

  38. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893-3904.

    Article  CAS  Google Scholar 

  39. M. Murayama and K. Hono: Acta Mater., 1999, vol. 47, pp. 1537-48.

    Article  CAS  Google Scholar 

  40. P.A. Rometsch and G.B. Schaffer: Mater. Sci. Eng. A, 2002, vol. 325, pp. 424-34.

    Article  Google Scholar 

  41. N.D. Alexopoulos and S.G. Pantelakis: Mater. Des., 2004, vol. 25, pp. 419-20.

    Article  CAS  Google Scholar 

  42. W. Reif, S. Yu, J. Dutkiewicz, R. Ciach, and J. Król: Mater. Des., 1997, vol. 18, pp. 253-56.

    Article  CAS  Google Scholar 

  43. M. Drouzy, S. Jacob, and M. Richard: AFS Int. Cast. Met. J., 1980, vol. 5, pp. 43-50.

    CAS  Google Scholar 

  44. N.D. Alexopoulos: J. Mater. Eng. Perform., 2006, vol. 15, pp. 59-66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Colás.

Additional information

Manuscript submitted December 28, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera, E., Alejandro González, J., Talamantes-Silva, J. et al. Effect of the Delay in Time Between Cooling and Aging in Heat-Treated Cast Aluminum Alloys. Metall Mater Trans B 42, 1023–1030 (2011). https://doi.org/10.1007/s11663-011-9534-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9534-1

Keywords

Navigation