Skip to main content
Log in

Investigation on the Effect of Retrogression and Re-aging on Microstructure and Mechanical Properties of 2024 Aluminum Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current study, a new artificial aging process, Retrogression and re-aging (RRA), which is a multi-step precipitation hardening, was utilized to investigate its effect on microstructure and mechanical properties of Al2024 alloys and compare the results with conventional T6. The microstructural evolution during heat treatment was studied by SEM and TEM, and tension test and hardness test were used to investigate the mechanical properties of specimens. The results showed that RRA process has improved the mechanical properties of Al2024 in comparison with T6. Yield stress, UTS, elongations and brinell hardness in RRA samples are higher than T6. The microstructural investigation revealed that during RRA, more secondary particles solute in matrix and more and finer S and θ phase precipitate. It was also observed that in RRA samples, S and θ phases have better distribution in Al matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Staszczyk, J. Sawicki and B. Adamczyk-Cieslak, A Study of Second-Phase Precipitates and Dispersoid Particles in 2024 Aluminum Alloy After Different Aging Treatments, Materials, 2019, 12(24), p 4168. https://doi.org/10.3390/ma1224168

    Article  CAS  Google Scholar 

  2. D.A.P. Reis, A.A. Couto, N.I. Domingues, A.C.O. Hirschmann, S. Zepka and C. Moura Neto, Effect of Artificial Aging on the Mechanical Properties of an Aerospace Aluminum Alloy 2024, Defect Diffus Forum, 2012, 326, p 193–198. https://doi.org/10.4028/www.scientific.net/DDF.326-328.193

    Article  CAS  Google Scholar 

  3. S. Lipa, Ł Kaczmarek, M. Stegliński, H. Radziszewska, K. Kyzioł and D. Kottfer, Effect of Core/Shell Precipitations on Fatigue Strength of 2024-T6i6 Alloy, Int. J. Fatigue., 2019, 127, p 165–174. https://doi.org/10.1016/j.ijfatigue.2019.06.006

    Article  CAS  Google Scholar 

  4. G. Xiao, B. Chen, S. Li and X. Zhuo, Fatigue Life Analysis of Aero-Engine Blades for Abrasive Belt Grinding Considering Residual Stress, Eng. Fail. Anal., 2022, 131, p 105846. https://doi.org/10.1016/j.engfailanal.2021.105846

    Article  Google Scholar 

  5. Z.M. Liang, G.Y. Wang, Z. Bin Sun, D.L. Wang, L.W. Wang and Y.M. Liang, Rapidly Improved Tensile Strength of 6n01 Al Alloy Fsw Joints By Electropulsing and Artificial Aging Treatment, Mater. Sci. Eng. A, 2022, 841, p 143056. https://doi.org/10.1016/j.msea.2022.143056

    Article  CAS  Google Scholar 

  6. Y. Xie, X. Meng, F. Wang, Y. Jiang, X. Ma, L. Wan and Y. Huang, Insight on Corrosion Behavior of Friction Stir Welded Aa2219/Aa2195 Joints in Astronautical Engineering, Corros. Sci., 2021, 192, p 109800. https://doi.org/10.1016/j.corsci.2021.109800

    Article  CAS  Google Scholar 

  7. K.B. Demétrio, A.P.G. Nogueira, C. Menapace, T. Bendo and A. Molinari, Effect of Nanostructure on Phase Transformations during Heat Treatment of 2024 Aluminum Alloy, J. Mater. Res. Technol., 2021, 14, p 1800–1808. https://doi.org/10.1016/j.jmrt.2021.07.044

    Article  CAS  Google Scholar 

  8. C.K.S. Moy, M. Weiss, J. Xia, G. Sha, S.P. Ringer and G. Ranzi, Influence of Heat Treatment on the Microstructure, Texture and Formability of 2024 Aluminium Alloy, Mater. Sci. Eng. A, 2012, 552, p 48–60. https://doi.org/10.1016/j.msea.2012.04.113

    Article  CAS  Google Scholar 

  9. T.J. Bastow and A.J. Hill, Guinier-Preston and Guinier-Preston-Bagaryatsky Zone Reversion in Al-Cu-Mg Alloys Studied By Nmr, Mater. Sci. Forum., 2006, 519–521, p 1385–1390. https://doi.org/10.4028/www.scientific.net/msf.519-521.1385

    Article  Google Scholar 

  10. H. Wang, J. Xie, Y. Chen, W. Liu and W. Zhong, Effect of Cocrfenimn High Entropy Alloy Interlayer on Microstructure and Mechanical Properties of Laser-Welded Niti/304 Ss Joint, J. Mater. Res. Technol., 2022, 18, p 1028–1037. https://doi.org/10.1016/j.jmrt.2022.03.022

    Article  CAS  Google Scholar 

  11. L. Liang, M. Xu, Y. Chen, T. Zhang, W. Tong, H. Liu, H. Wang and H. Li, Effect of Welding Thermal Treatment on the Microstructure and Mechanical Properties of Nickel-Based Superalloy Fabricated By Selective Laser Melting, Mater. Sci. Eng. A, 2021, 819, p 141507. https://doi.org/10.1016/j.msea.2021.141507

    Article  CAS  Google Scholar 

  12. S.C. Wang and M.J. Starink, Two Types of S Phase Precipitates in Al-Cu-Mg Alloys, Acta Mater., 2007, 55, p 933–941. https://doi.org/10.1016/j.actamat.2006.09.015

    Article  CAS  Google Scholar 

  13. Y. Zhong, J. Xie, Y. Chen, L. Yin, P. He and W. Lu, Microstructure and Mechanical Properties of Micro Laser Welding NiTiNb/Ti6Al4V Dissimilar Alloys Lap Joints with Nickel Interlayer, Mater. Lett., 2022, 306, p 130896. https://doi.org/10.1016/j.matlet.2021.130896

    Article  CAS  Google Scholar 

  14. L. Sun, Y. Guo, L. Chen and G. Zhao, Effects of Solution and Aging Treatments on the Microstructure and Mechanical Properties of Cold Rolled 2024 Al Alloy Sheet, J. Mater. Res. Technol., 2021, 12, p 1126–1142. https://doi.org/10.1016/j.jmrt.2021.03.051

    Article  CAS  Google Scholar 

  15. Y. Zhao, Stability of Phase Boundary Between L12-Ni3Al Phases: A Phase Field Study, Intermetallics, 2022, 144, p 107528. https://doi.org/10.1016/j.intermet.2022.107528

    Article  CAS  Google Scholar 

  16. Y. Zhao, K. Liu, H. Hou and L.-Q. Chen, Role of Interfacial Energy Anisotropy in Dendrite Orientation in Al-Zn Alloys: A phase Field Study, Mater. Des., 2022, 216, p 110555. https://doi.org/10.1016/j.matdes.2022.110555

    Article  CAS  Google Scholar 

  17. M. Emamy, M. Oliayee and K. Tavighi, Author ’s Accepted Manuscript, Mater. Sci. Eng. A, 2014 https://doi.org/10.1016/j.msea.2014.12.023

    Article  Google Scholar 

  18. N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou and S.K. Kourkoulis, The Effect of Artificial Ageing Heat Treatments on the Corrosion-Induced Hydrogen Embrittlement of 2024 (Al-Cu) aluminium alloy, Corros. Sci., 2016, 102, p 413–424. https://doi.org/10.1016/j.corsci.2015.10.034

    Article  CAS  Google Scholar 

  19. M.S. Nandana, K. Udaya Bhat and C.M. Manjunatha, Effect of Retrogression and Re-ageing Heat Treatment on Microstructure and Microhardness of Aluminium 7010 Alloy, MATEC Web Conf., 2018 https://doi.org/10.1051/matecconf/201714402003

    Article  Google Scholar 

  20. R. Gürbüz, N. Akgün, Efect of retrogression and re-aging heat treatment on the corrosion fatigue crack growth behavior of AA7050 aluminum alloy. In: 11th Int. Conf. Fract. 2005, ICF11. 1 (2005) 95

  21. S.V. Emani, J. Benedyk, P. Nash and D. Chen, Double Aging and Thermomechanical Heat Treatment of AA7075 Aluminum Alloy Extrusions, J. Mater. Sci., 2009, 44, p 6384–6391. https://doi.org/10.1007/s10853-009-3879-8

    Article  CAS  Google Scholar 

  22. X. Li, H. Wang, T. Shi, C. Zhang, X. Jiang, X. Zhou and C. Li, Efficient Preparation and Anticorrosion Mechanism of Superhydrophobic 7075 Aviation Aluminum Alloy, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met, Mater. Eng., 2022, 51, p 6–10.

    CAS  Google Scholar 

  23. Y. Xu, H. Zhang, F. Yang, L. Tong, D. Yan, Y. Yang, Y. Wang and Y. Wu, Experimental Investigation of Pneumatic Motor for transport Application, Renew. Energy, 2021, 179, p 517–527. https://doi.org/10.1016/j.renene.2021.07.072

    Article  Google Scholar 

  24. B. Cina, (1974), https://patents.google.com/patent/US3856584A/en. Reducing the Susceptibility of Alloys, Particularly Aluminium Alloys, to Stress Corrosion Cracking

  25. J.F. Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen and Z.Q. Zheng, Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments, Trans. Nonferrous Met. Soc. China, 2008, 18, p 755–762. https://doi.org/10.1016/S1003-6326(08)60130-2

    Article  CAS  Google Scholar 

  26. Z. Wu, S. Wu, J. Bao, W. Qian, S. Karabal, W. Sun and P.J. Withers, The Effect of Defect Population on the Anisotropic Fatigue Resistance of AlSi10Mg Alloy Fabricated by Laser Powder Bed Fusion, Int. J. Fatigue., 2021, 151, p 106317. https://doi.org/10.1016/j.ijfatigue.2021.106317

    Article  CAS  Google Scholar 

  27. X. Li, X. Yang, D. Yi, B. Liu, J. Zhu, J. Li, C. Gao and L. Wang, Effects of NbC Content on Microstructural Evolution and Mechanical Properties of Laser Cladded Fe50Mn30Co10Cr10-xNbC Composite Coatings, Intermetallics, 2021, 138, p 107309. https://doi.org/10.1016/j.intermet.2021.107309

    Article  CAS  Google Scholar 

  28. X. Li, D. Yi, X. Wu, J. Zhang, X. Yang, Z. Zhao, Y. Feng, J. Wang, P. Bai, B. Liu and Y. Liu, Effect of Construction Angles on Microstructure and Mechanical Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting, J. Alloys Compd., 2021, 881, p 160459. https://doi.org/10.1016/j.jallcom.2021.160459

    Article  CAS  Google Scholar 

  29. S. Pournazari, K.M. Deen, D.M. Maijer and E. Asselin, Effect of Retrogression and Re-aging (RRA) Heat Treatment on the Corrosion Behavior of B206 Aluminum-Copper Casting Alloy, Mater. Corros., 2018, 69, p 998–1015. https://doi.org/10.1002/maco.201709925

    Article  CAS  Google Scholar 

  30. I. ASTM, ASTM E8/E8M Standard Test Methods For Tension Testing of Metallic Materials, ASTM Int, 2010 https://doi.org/10.1520/E0008

    Article  Google Scholar 

  31. I. Standard, (2003) International Standard Metallic Materials Sheet and Strip

  32. Z.Q. Feng, Y.Q. Yang, B. Huang, M.H. Li, Y.X. Chen and J.G. Ru, Crystal Substructures of the Rotation-Twinned T (Al20Cu 2Mn3) Phase in 2024 Aluminum Alloy, J. Alloys Compd., 2014, 583, p 445–451. https://doi.org/10.1016/j.jallcom.2013.08.200

    Article  CAS  Google Scholar 

  33. S. Krymskiy, O. Sitdikov, E. Avtokratova and M. Markushev, 2024 Aluminum Alloy Ultrahigh-Strength Sheet Due to Two-Level Nanostructuring Under Cryorolling and Heat Treatment, Trans. Nonferrous Met. Soc. China, 2020, 30, p 14–26. https://doi.org/10.1016/S1003-6326(19)65176-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Project of Hunan Provincial Department of Education (design and analysis of assembled frictional energy dissipation composite wallboard 20C0850); Yongzhou Guided Science and Technology Project (research on key technologies for BIM-based modular structure design and construction 2019-yzkj-17); National Natural Science Foundation of China in No. 51808247; Huaiyin Institute of Technology Laboratory Open Fund in No. JSZP201902; The Natural Science Foundation of the Jiangsu Higher Education Institutions of China in No. 18KJB560003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Gao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, E., Gao, Y., Ye, T. et al. Investigation on the Effect of Retrogression and Re-aging on Microstructure and Mechanical Properties of 2024 Aluminum Alloys. J. of Materi Eng and Perform 32, 728–734 (2023). https://doi.org/10.1007/s11665-022-07141-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07141-4

Keywords

Navigation