Skip to main content
Log in

Performance of a Modified Schytil Model for the Surface Tension of Liquid Metallic Elements at Their Melting Point Temperatures

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

From the standpoint of materials process science, the performances of two models for the melting point surface tension were evaluated by comparing experimental values for 66 liquid metallic elements with those calculated from these models using a relative standard deviation as a yardstick: One is the Schytil model, and the other is a modified Schytil model now presented by the authors. The performance of the Schytil model for a large number of liquid metallic elements, in respect of the accuracy of calculations, is not satisfactory. In contrast, the modified Schytil model incorporating a common parameter denoted by \( \xi_{\rm T}^{1/2} \) makes a noticeable improvement over the Schytil model. With the exception of some 12 metallic elements, the modified Schytil model performs well for many metallic elements, although the predicted values of \( \xi_{\rm T}^{1/2} \) were used for calculating the surface tension of 32 (pure metals) of 66 liquid metallic elements; the calculated values fall, or almost fall, within the range of uncertainties associated with experimental measurements. Finally, it was shown that the values of the respective numeric factor for liquid metallic elements, which appear in the modified Schytil model, vary periodically with atomic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.C. Mills: Fundamentals of Metallurgy, Ed. S. Seetharaman, pp. 109-77, Woodhead Publishing, Cambridge, UK, 2005.

    Google Scholar 

  2. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, pp. 1-244, Woodhead Publishing, Cambridge, UK, 2002.

    Google Scholar 

  3. T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, UK, 1993.

    Google Scholar 

  4. R. Novakovic and T. Tanaka: Physica B, 2006, vol. 371, pp. 223-31.

    Article  CAS  ADS  Google Scholar 

  5. L.C. Prasad and R.K. Jha: Phys. Status Solidi a, 2005, vol. 202, pp. 2709-19.

    Article  CAS  ADS  Google Scholar 

  6. I. Egry, J. Brillo, and T. Matsushita: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 460-64.

    Google Scholar 

  7. J. Lee, W. Shimoda, and T. Tanaka: Meas. Sci. Technol., 2005, vol.16, pp. 438-42.

    Article  CAS  ADS  Google Scholar 

  8. R. Novakovic, E. Ricci, D. Giuranno, and A., Passerone: Surf. Sci., 2005, vol. 576, pp. 175-87.

    Article  CAS  ADS  Google Scholar 

  9. S. Morioka: Mater. Sci. Eng. A, 2003, vol. 362, pp. 223-27.

    Article  Google Scholar 

  10. S. Seetharaman and D. Sichen: ISIJ Int., 1997, vol. 37, pp. 109-18.

    Article  CAS  Google Scholar 

  11. T. Iida, M. Ueda, and Z. Morita: Tetsu-To-Hagané, 1976, vol. 62, pp. 1169-78.

    CAS  Google Scholar 

  12. H.M. Lu, T.H. Wang, and Q. Jiang: J. Cryst. Growth, 2006, vol. 293, pp. 294-98.

    Article  CAS  ADS  Google Scholar 

  13. T. Ishikawa, P.-F. Paradis, T. Itami, and S. Yoda: J. Chem. Phys., 2003, vol. 118, pp. 7912-20.

    Article  CAS  ADS  Google Scholar 

  14. B. Vinet, L. Magnusson, H. Fredriksson, and P.J. Desré: J. Colloid Interface Sci., 2002, vol. 255, pp. 363-74.

    Article  CAS  PubMed  Google Scholar 

  15. I. Yokoyama: Physica B, 2000, vol. 291, pp. 145-51.

    Article  CAS  ADS  Google Scholar 

  16. N.H. March: J. Non-Cryst. Solids, 1999, vol. 250-252, pp. 1-8.

    Article  Google Scholar 

  17. N.H. March and J.A. Alonso: Mol. Phys., 1998, vol. 95, pp. 353-61.

    Article  CAS  ADS  Google Scholar 

  18. N. Eustathopoulos, B. Drevet, and E. Ricci: J. Cryst. Growth, 1998, vol. 191, pp. 268-74.

    Article  CAS  ADS  Google Scholar 

  19. J.W. Nowok: Scripta Metall. Mater., 1993, vol. 29, pp. 931-35.

    Article  CAS  Google Scholar 

  20. G. Kaptay: Mater. Sci. Forum, 2005, vol. 473-474, pp. 1-10.

    Article  ADS  Google Scholar 

  21. R.M. Digilov: Int. J. Thermophys., 2002, vol. 23, pp. 1381-90.

    Article  CAS  Google Scholar 

  22. E.T. Turkdogan: Can. Metall. Q., 2002, vol. 41, pp. 151-62.

    CAS  Google Scholar 

  23. B.J. Keene: Int. Mater. Rev., 1993, vol. 38, pp.157-92.

    CAS  Google Scholar 

  24. T. Iida, R.I.L. Guthrie, and M. Isac: ICS Proc., 3rd Int. Congr. on Science and Technology of Steelmaking, Association for Iron & Steel Technology, Warrendale, PA, 2005, pp. 3-13.

    Google Scholar 

  25. T. Iida and R.I.L. Guthrie: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 967–78.

  26. F. Schytil: Z. Naturforsh., 1949, vol. 4, pp. 191-94.

    MATH  ADS  Google Scholar 

  27. V.I. Kononenko, A.L. Sukhman, S.L. Gruverman, and V.V. Torokin: Phys. Status Solidi a, 1984, vol. 84, pp. 423-32.

    Article  CAS  ADS  Google Scholar 

  28. T. Iida, A. Kasama, M. Misawa, and Z. Morita: J. Jpn. Inst. Met., 1974, vol. 38, pp. 177-81.

    CAS  Google Scholar 

  29. B.C. Allen: Trans. Met. Soc. AIME, 1963, vol. 227, pp. 1175-83.

    CAS  Google Scholar 

  30. W.F. Gale and T.C. Tolemeier: Smithells Metals Reference Book, 8th ed., pp.14-1-16, Elsevier, Oxford, UK, 2004.

  31. S. Nagakura, H. Iguchi, H. Ezawa, S. Iwamura, F. Sato, and R. Kubo: Iwanami Dictionary of Physical Sciences (Iwanami Rikagaku Jiten), 5th ed., p. 1199, Iwanami Press, Tokyo, Japan, 1998.

    Google Scholar 

  32. T. Iida, R. Guthrie, M. Isac, and N. Tripathi: Metall. Mater, Trans. B, 2006, vol. 37B, pp. 403-12.

    Article  CAS  ADS  Google Scholar 

  33. T. Iida, R. Guthrie, and N. Tripathi: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 559-64.

    Article  CAS  Google Scholar 

  34. T. Iida and R. Guthrie: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 949–58.

  35. T. Iida and R. Guthrie: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 959–66.

  36. T. Iida, T. Matsushita, and S. Seetharaman: Proc. 152 nd ISIJ Meeting on Current Advances in Materials and Processes, Niigata, Japan, 2006, p. 845.

    Google Scholar 

  37. T. Iida, R.I.L. Guthrie, and M. Isac: ICS Proc. 3rd Int. Congr. on Science and Technology of Steelmaking, Association for Iron & Steel Technology, Warrendale, PA, 2005, pp. 57-66.

    Google Scholar 

  38. E.N. da C. Andrade: Phil. Mag., 1934, vol.17, pp. 497-511.

    CAS  Google Scholar 

  39. M. Born and H.S. Green: Proc. R. Soc. 1947, vol. 190, pp. 455-74.

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  40. E.N. da C. Andrade and E.R. Dobbs: Proc. R. Soc. 1952, vol. 211, pp. 12-30.

    Article  CAS  ADS  Google Scholar 

  41. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, pp.107-14, Academic Press, New York, NY, 1980.

    Google Scholar 

  42. T. Iida, R.I.L. Guthrie, and Z. Morita: Can. Metall. Q., 1988, vol. 27, pp. 1-5.

    CAS  Google Scholar 

  43. L. Battezzati and A.L. Greer: Acta Metall., 1989, vol. 37, pp. 1791–802.

  44. T. Iida, R.I.L. Guthrie, and Z. Morita: International Symposium on the Physical Chemistry of Iron and Steelmaking, Aug 29–September 2, Conference of Metallurgists, Toronto, 1982, The Metallurgical Society of CIM. Iron and Steel and Basic Sections, pp. III-25–III-32.

  45. R.F. Brooks, A.T. Dinsdale, and P.N. Quested: Meas. Sci. Technol. 2005, vol. 16, pp. 354-62.

    Article  CAS  ADS  Google Scholar 

  46. T. Ishikawa, P.-F. Paradis, T. Itami, and S. Yoda: Meas. Sci. Technol., 2005, vol. 16, pp. 443-51.

    Article  CAS  ADS  Google Scholar 

  47. K.C. Mills and Y.C. Su: Int. Mater. Rev., 2006, vol. 51, pp. 329-51.

    Article  CAS  ADS  Google Scholar 

  48. S. Blairs: Phys. Chem. Liq., 2007, vol. 45, pp. 399-407.

    Article  CAS  Google Scholar 

  49. S. Blairs: Int. Mater. Rev., 2007, vol. 52, pp. 321-43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Guthrie.

Additional information

Manuscript submitted March 2, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iida, T., Guthrie, R. Performance of a Modified Schytil Model for the Surface Tension of Liquid Metallic Elements at Their Melting Point Temperatures. Metall Mater Trans B 41, 437–447 (2010). https://doi.org/10.1007/s11663-009-9330-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9330-3

Keywords

Navigation