Skip to main content
Log in

Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content \( \left( {{{{\text{P}}_{{{\text{H}}_{ 2} {\text{O}}}} } \mathord{\left/ {\vphantom {{{\text{P}}_{{{\text{H}}_{ 2} {\text{O}}}} } {{\text{P}}_{{{\text{H}}_{ 2} }} }}} \right. \kern-\nulldelimiterspace} {{\text{P}}_{{{\text{H}}_{ 2} }} }} = 0.01{\text{ to }}0.13} \right) \) on the oxidation and decarburization behavior of transformation-induced plasticity (TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)2SiO4) and ((MnO) x (FeO)1−x . The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059–60.

    Article  CAS  Google Scholar 

  2. A. Perlade, O. Bouaziz, and Q. Furnemont: Mater. Sci. Eng., A, 2003, vol. 356, pp. 145–52.

    Article  Google Scholar 

  3. B.L. Jones and P.N. Jones: Scripta Metall., 1974, vol. 8, pp. 445–50.

    Article  Google Scholar 

  4. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck: Scripta Mater., 2001, vol. 44, pp. 885–92.

    Article  CAS  Google Scholar 

  5. L. Allegra, R.G. Hart, and H.E. Townsend: Metall. Trans. A, 1983, vol. 14A, pp. 401–11.

    ADS  Google Scholar 

  6. C.E. Jordan, R. Zuhr, and A.R. Marder: Metall. Mater. Trans. A., 1997, vol. 28A, pp. 2695–703.

    Article  CAS  Google Scholar 

  7. P. J. Jacques, E. Girault, P. Harlet, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1061–67.

    Article  CAS  Google Scholar 

  8. B.C. De Cooman, J. Mahieu, J. Maki, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    Google Scholar 

  9. M. De Meyer, D. Vanderschuren, and B. De Cooman: ISIJ Int., 1999, vol. 39, pp. 813–22.

    Article  Google Scholar 

  10. D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim: Scripta Mater., 2007, vol. 57, pp. 1097–1100.

    Article  CAS  Google Scholar 

  11. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J.V. Humbeeck, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1068–74.

  12. G. Lyudkovsky and P.K. Rastogi: Metall. Trans. A, 1984, vol. 15, pp. 257–60.

    Article  Google Scholar 

  13. Z. Zhang, I.R. Sohn, G. Meier, F. Pettit, and S. Sridhar: Metall. Mater. Trans. B. DOI:10.1007/s11663-009-9238-y.

  14. M. Jenko, F. Vodopivec, H.J. Grabke, H. Viefhaus, B. Pracek, M. Lucas, and M. Godec: Steel Res., 1994, vol. 65, pp. 500–04.

    CAS  Google Scholar 

  15. R. Mast, H.J. Grabke, M. Jenko, and M. Lucas: Mater. Sci. Forum, 1996, vol. 207, pp. 401–04.

    Article  Google Scholar 

  16. C. Thorning and S. Sridhar: Philos. Mag., 2007, vol. 87, no. 23, pp. 1–21.

  17. T. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 287–97.

    Article  ADS  CAS  Google Scholar 

  18. N. Birks, G. Meier, and F. Pettit: Introduction of High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 2006, p. 151.

    Google Scholar 

  19. C. Wagner: Z. Elektrochem., 1959, vol. 63, pp. 772–82.

    CAS  Google Scholar 

  20. C. Wert and C. Zener: Phys. Rev., 1949, vol. 76, pp. 1169–75.

    Article  ADS  CAS  Google Scholar 

  21. B. Sundman: Proc. Symp. Thermodynamics, Kinetics, Characterization, and Modeling of Austenite and Decomposition, E. Buddy Damn and Matthew J. Merwin, eds., TMS, Warrendale, PA, 2003, pp. 113–20.

  22. M. Hillert and J. Agren: Scripta Mater., 2004, vol. 50, pp. 697–99.

    Article  CAS  Google Scholar 

  23. W.F. Gale, T.C. Totemeier, and J.C. Smithells: Metals Reference Book, Elsevier Butterworth–Heinemann, Burlington, MA, 2004, p. 680.

    Google Scholar 

  24. E. Schurmann, Th. Schmidt, and F. Tillmann: Giesserei Forsch, 1967, vol. 19, p. 25.

    Google Scholar 

  25. L.S. Darken: Trans. AIME, 1949, vol. 180, pp. 430–38.

    Google Scholar 

  26. X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, and Y.W. Kim: Scripta Mater., 2008, vol. 59, pp. 290–93.

    Article  CAS  Google Scholar 

  27. X.S. Li, S. Baek, C.S. Oh, S.J. Kim, and Y.W. Kim: Scripta Mater., 2007, vol. 57, pp. 113–16.

    Article  CAS  Google Scholar 

  28. C.L. Hedberg: Handbook of Auger Electron Spectroscopy, 3rd ed., Physical Electronics, Inc., Chanhassen, MN, 1976, p. 142.

  29. J. Chastain: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Inc., Waltham, MA, 1992, p. 128.

    Google Scholar 

  30. J.E. Hammer, S.J. Laney, R.W. Jackson, K. Coyne, F.S. Pettit, and G.H. Meier: Oxid. Met., 2007, vol. 67, pp. 1–38.

    Article  CAS  Google Scholar 

  31. G. Lyudkovsky: IEEE Trans. Magn., 1986, vol. 22, pp. 508–10.

    Article  ADS  Google Scholar 

  32. I.R. Sohn, S.H. Jeon, H.J. Kang, and K.G. Chin: Galvatech ‘07, The Iron and Steel Institute of Japan, Japan, 2007, pp. 439–43

Download references

Acknowledgments

The financial support from POSCO (Jeonnam, Korea) is acknowledged. T.L. Baum is acknowledged for her technical help during discussions during TG and SEM measurements. Special thanks are also extended to B. Webler, J. Nakano, and C. Thorning for instructive discussions. W. Jennings, Materials Science and Engineering, Case Western Reserve University (Cleveland, OH), is gratefully acknowledged for his help on AES and XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sridhar.

Additional information

Manuscript submitted November 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Sohn, I., Pettit, F. et al. Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels. Metall Mater Trans B 40, 567–584 (2009). https://doi.org/10.1007/s11663-009-9255-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9255-x

Keywords

Navigation