Skip to main content
Log in

Effect of Alloying Elements, Water Vapor Content, and Temperature on the Oxidation of Interstitial-Free Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present study is an investigation of the surface and subsurface oxidation of Mn solid-solution-strengthened interstitial-free (IF) steels with the objective of elucidating the surface evolution before coating. Thermogravimetric (TG) analysis was carried out under 95 vol pct Ar + 5 vol pct (H2 + H2O) atmospheres with \( P_{{{\text{H}}_{2} {\text{O}}}} /P_{{{\text{H}}_{2} }} \) ranging from 0.01 to 0.13 and temperatures ranging from 800 °C to 843 °C. Post-exposure characterization was carried out through scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and glancing-angle X-ray diffraction (XRD) to study the external and internal oxide evolution. The oxidation proceeds as a combination of the internal and external formation of Mn oxides. Decreasing the \( P_{{{\text{H}}_{2} {\text{O}}}} /P_{{{\text{H}}_{2} }} \) ratios or temperature has the effect of decreasing the amount of oxidation, which is a combination of internal and external oxidation controlled by solid-state oxygen and manganese diffusion, respectively. External oxides are not continuous; they are instead concentrated near the intersection of alloy grain boundaries with the external surface. Internal oxides are concentrated along the grain boundaries. The effects of Sb (0.03 wt pct), B (10 ppm), P (0.04 and 0.08 wt pct), and Si (0.06 to 1.5 wt pct) on the oxidation were investigated. It is found that small amounts of Sb and B have a significant effect on decreasing both the external and internal oxidation, whereas Si and P increase the external and internal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.

    CAS  Google Scholar 

  2. I. Hertveldt, B.C. De Cooman, and S. Classens: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1225–32.

    Article  CAS  Google Scholar 

  3. S.I. Kim, S.H. Choi, and Y. Lee: Mater Sci. Eng., A, 2005, vol. 406, pp. 125–33.

    Article  Google Scholar 

  4. C.E. Jordan, R. Zuhr and A.R. Marder: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2695–2703.

    Article  CAS  Google Scholar 

  5. T. Toki, K. Oshima, T. Nakamori, Y. Saito, T. Tsuda, and Y. Hobo: The Physical Metallurgy of Zinc Coated Steel, Proc. Int. Conf., San Francisco, CA, TMS, Warrendale, PA, 1994, pp. 16980.

  6. J.D. Mercer: Galvatech ‘92, Verlag Stahl Eisen, Amsterdam, 1992, pp. 204–09.

    Google Scholar 

  7. L. Allegra, R.G. Hart, and H.E. Townsend: Metall. Trans. A, 1983, vol. 14A, pp. 401–11.

    ADS  Google Scholar 

  8. J. Mahieu, B.B. De Cooman, J. Maki, and S. Claeffens: Iron and Steelmaker, 2002, vol. 29, pp. 29–34.

    Article  CAS  Google Scholar 

  9. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2095–98.

    Google Scholar 

  10. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J.V. Humbeeck, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1068–74.

    Article  CAS  Google Scholar 

  11. R. Van De Putte, D. Loison, S. Claessens, Z. Zermout, and J. Penning: Galvatech ‘07, The Iron and Steel Institute of Japan, Japan, 2007, pp. 415–20.

  12. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–09.

    Article  CAS  Google Scholar 

  13. C. Wagner: J. Electrochem. Soc., 1956, vol. 103, pp. 571–80.

    Article  CAS  Google Scholar 

  14. C.R. Shastry, J.A. Rotole, and T.W. Kaiser: Galvatech ‘07, The Iron and Steel Institute of Japan, Japan, pp. 403–08.

  15. P. Heitjans and J. Karger: Diffusion in Condensed Matter-Methods, Materials and Models, Springer-Verlag, Berlin, 2005, pp. 337–66.

    Book  Google Scholar 

  16. I. Hertveldt, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1225–32.

    Article  CAS  Google Scholar 

  17. C. Coffin and S.W. Thomposon: in Galvannealing of Interstitial-Free Sheet Steels Strengthened by Manganese, Silicon or Phosphorous, An Initial Study: The Physical Metallurgy of Zinc Coated Steel, A.R. Marder, ed., TMS, Warrendale, PA, 1993, pp. 181–96.

    Google Scholar 

  18. C. Kato: CAMP-ISIJ, 1994, vol. 7, pp. 1511–12.

    Google Scholar 

  19. E. Clauberg, C. Uebing, and H.J. Grabke: Appl. Surf. Sci., 1999, vol. 143, pp. 206–14.

    Article  ADS  CAS  Google Scholar 

  20. C.L. Briant and A.M. Ritter: Acta Metall., 1984, vol. 32, pp. 2043–52.

    Article  CAS  Google Scholar 

  21. G. Lyudkovsky: IEEE Trans. Magn., 1986, vol. 5, pp. 508–11.

    Article  ADS  Google Scholar 

  22. T. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 287–97.

    Article  ADS  CAS  Google Scholar 

  23. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, 2nd ed., John Wiley, 2002.

  24. T. Nagasaka and R.J. Fruehan: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 245–53.

    Article  ADS  Google Scholar 

  25. R.J. Fruehan, G.R. Belton, F.J. Mannion, and Y. Sasaki: Metall. Trans., B, 1992, vol. 23B, pp. 45–51.

    Article  ADS  CAS  Google Scholar 

  26. C. Wagner: Z. Elektrochem., 1959, vol. 63, pp. 772–82.

    CAS  Google Scholar 

  27. N. Birks, G.H. Meier, and F.S. Pettit: Introduction of the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 327–31.

    Google Scholar 

  28. D. Huin, P. Flauder, and J.B. Leblond: Oxid. Met., 2005, vol. 64, pp. 131–67.

    Article  CAS  Google Scholar 

  29. I. Kaur, Y. Mishin, and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion, John Wiley & Sons, Ltd., Chichester, England, 1995, pp. 13–213.

    Google Scholar 

  30. K.T. Jacob, J.P. Hajra, and M. Iwase: Arch. Eisenhuttenwes., 1984, vol. 55, pp. 421–24.

    CAS  Google Scholar 

  31. J.H. Swisher and E.T. Turkdogan: Trans. TMS-AIME, 1967, vol. 239, pp. 426–31.

    CAS  Google Scholar 

  32. G. Lyudkovsky, A.G. Preban, and J.M. Shapiro: J. Appl. Phys., 1982, vol. 53, pp. 2419–21.

    Article  ADS  CAS  Google Scholar 

  33. G. Lyudkovsky: IEEE Trans. Magn., 1986, vol. 22, pp. 508–10.

    Article  ADS  Google Scholar 

  34. S. Yoshitsugu and K. Kazuaki: J. Iron Steel Inst. Jpn., 2003, vol. 89, pp. 1158–64.

    Google Scholar 

  35. H.J. Grabke, V. Leroy, and H. Viefhaus: ISIJ Int., 1995, vol. 35, pp. 95–113.

    Article  CAS  Google Scholar 

  36. M. Jenko, F. Vodopivec, H.J. Grabke, H. Viefhaus, B. Pracek, M. Lucas, and M. Godec: Steel Res., 1994, vol. 65, pp. 500–04.

    CAS  Google Scholar 

  37. C. Thorning and S. Sridhar: Philos. Mag., 2007, pp. 1–21.

  38. P. Shewmon: Diffusion in Solids, TMS, Warrendale, PA, 1989.

    Google Scholar 

  39. I. Kauer, Y. Mishin, and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion, John Wiley & Sons, Chichester, England, 1995.

    Google Scholar 

  40. M. Allibert and H. Gaye: in Slag Atlas, 2nd ed., Verein Deutscher Eisenhüttenleute, ed., Verlag Stahleisen GmbH, 1995, p. 52.

  41. R.H. Jones, D.R. Baer, L.A. Charlot, and M.T, Thomas: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 2005–11.

    ADS  CAS  Google Scholar 

  42. J. Chastain: Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmer Corporation, Waltham, MA, 1992, p. 128.

    Google Scholar 

  43. E. Clauberg, C. Uebing, and H.J. Grabke: Appl. Surf. Sci., 1999, vol. 143, pp. 206–14.

    Article  ADS  CAS  Google Scholar 

  44. R.A. Rapp: Acta Metall., 1961, vol. 9, pp. 730–41.

    Article  CAS  Google Scholar 

  45. L.S. Darken: Trans. Am. Soc. Met., 1961, vol. 54, pp. 600–06.

    Google Scholar 

  46. S. Guruswamy, S.M. Park, J.P. Hirth, and R.A. Rapp: Oxid. Met., 1986, vol. 26, pp. 77–100.

    Article  CAS  Google Scholar 

  47. F.H. Stott and G.C. Wood: Mater. Sci. Technol., 1988, vol. 4, pp. 1072–78.

    CAS  Google Scholar 

  48. H.C. Yi, S.W. Guan, W.W. Smeltzer, and A. Petric: Acta Mater., 1994, vol. 42, pp. 981–90.

    Article  CAS  Google Scholar 

  49. J.E. Hammer, S.J. Laney, R.W. Jackson, K. Coyne, F.S. Pettit, and G.H. Meier: Oxid. Met., 2007, vol. 67, pp. 1–38.

    Article  CAS  Google Scholar 

  50. H.J. Grabke, G. Tauber, and H. Viefhaus: Scripta Metall, 1975, vol. 9, pp. 1181–84.

    Article  CAS  Google Scholar 

  51. H. De Rudy and H. Viefhaus: Surf. Sci., 1986, vol. 173, pp. 418–38.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from POSCO is acknowledged. The authors thank Ms. T.L. Baum and Mr. C. Wang for their technical help and interesting discussions during the TG analysis and SEM measurements. Special thanks are also extended to Mr. B. Webler, Dr. J. Nakano, and Mr. C. Thorning for instructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sridhar.

Additional information

Manuscript submitted April 29, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Sohn, I., Pettit, F. et al. Effect of Alloying Elements, Water Vapor Content, and Temperature on the Oxidation of Interstitial-Free Steels. Metall Mater Trans B 40, 550–566 (2009). https://doi.org/10.1007/s11663-009-9238-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9238-y

Keywords

Navigation