Skip to main content
Log in

Low-Temperature Production of Ti-Al Alloys Using Ionic Liquid Electrolytes: Effect of Process Variables on Current Density, Current Efficiency, and Deposit Morphology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Application of novel low-temperature ionic liquid electrolytes for the extraction of Ti-Al alloys was investigated. The study was focused on the production of Ti-Al alloys from AlCl3-1-butyl-3-methyl imidazolium chloride (BmimCl) (molar ratio of AlCl3 and BmimCl is 2:1) at different temperatures between 70 °C and 125 °C ± 3 °C. The Ti-Al alloys were deposited on titanium sheet (>99.9 wt pct) cathodes at various voltages between 1.5 and 3.0 V. Titanium sheet was used as the anode and its dissolution served the source of Ti ion in the electrolyte. Morphology and composition of deposited Ti-Al alloys were investigated using a scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS) and an inductively coupled plasma–optical emission spectrometer (ICP-OES). The phase analysis was carried out using X-ray diffraction (XRD). This study was focused to determine the effect of process variables such as applied voltage and temperature on cathode current density, current efficiency, composition, and morphology of Ti-Al alloys. The Ti-Al alloys containing about 13 to 25 atom pct Ti were produced with a current efficiency of about 79 to 87 pct. This study shows that uniform and fine particle size with high titanium content Ti-Al alloy was obtained in the voltage range of 1.5 to 2.0 V and temperature between 70 °C to 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Labconco is a trademark of Labconco Corporation, Kansas City, MO.

  2. PHILIPS is a trademark of Philips Electronic Instruments, Mahwah, NJ.

References

  1. D.M. Ferry, G.S. Picard, and B.L. Tremillion: J. Electrochem. Soc., 1988, vol. 135, p. 1443

    Article  CAS  Google Scholar 

  2. R.B. Head: J. Electrochem. Soc., 1961, vol. 108, p. 806

    Article  CAS  Google Scholar 

  3. A. Robin, and R.B. Ribeiro: J. Appl. Electrochem., 2000, vol. 30, pp. 239–46.

    Article  CAS  Google Scholar 

  4. F. Lantelme, K. Kuroda, and A. Barhoun: Electrochim. Acta, 1998, vol. 44, pp. 421–31

    Article  CAS  Google Scholar 

  5. G.M. Haarberg, W. Rolland, Å. Sterten, and J. Thonstad: J. Appl. Electrochem., 1993, vol. 23, pp. 217–24

    Article  CAS  Google Scholar 

  6. L. Langrand, A. Chausse, and R. Messina: Electrochim. Acta, 2001, vol. 46, pp. 2407–13

    Article  Google Scholar 

  7. E. Chassaing, F. Basile, and G. Lorthioir: J. Less-Common Met., 1979, vol. 68, pp. 153–58

    Article  CAS  Google Scholar 

  8. G.M. Janowski, and G.R. Stafford: Metall. Trans. A, 1992, vol. 23A, p. 2715

    ADS  CAS  Google Scholar 

  9. M.R. Ali, A. Nishikata, and T. Tsuru: Indian J. Chem. Technol., 2003, vol. 10, pp. 21–26

    Google Scholar 

  10. T. Tsuda, C.L. Hussey, G.R. Stafford, and J.E. Bonevich: J. Electrochem. Soc., 2003, vol. 150 (4), pp. C234–C243

    Article  CAS  Google Scholar 

  11. K.W. Fung, and G. Mamantov: J. Electroanal. Chem., 1972, vol. 35, pp. 27–34

    Article  CAS  Google Scholar 

  12. G.R. Stafford, and T.P. Moffat: J. Electrochem. Soc., 1995, vol. 142 (10), pp. 3288–96

    Article  CAS  Google Scholar 

  13. G.R. Stafford: J. Electrochem. Soc., 1994, vol. 141, p. 945

    Article  Google Scholar 

  14. R.T. Carlin, R.A. Osteryoung, J.S. Wilkes, and J. Rovng: Inorg. Chem., 1990, vol. 29, p. 3003

    Article  CAS  Google Scholar 

  15. T. Takenaka, A. Hoshikawa, and M. Kawakami: Proc. Int. Symp. on Molten Salt Technol., 1993, pp. 184–92

  16. I. Mukhopadhyay, C.L.R. Aravinda, D. Borissov, and W. Freyland: Electrochim. Acta, 2005, vol. 50, pp. 1275–81

    Article  CAS  Google Scholar 

  17. R.T. Carlin, W. Crawford, and M. Bersch: J. Electrochem. Soc., 1992, vol. 139 (10), pp. 2720–27

    Article  CAS  Google Scholar 

  18. Q. Liao, W.R. Pitner, G. Stewart, C.L. Hussey, and G.R. Stafford: J. Electrochem. Soc., 1997, vol. 144 (3), pp. 936–43

    Article  CAS  Google Scholar 

  19. P.K. Lai, and M. Skyllas-Kazacos: J. Electroanal. Chem., 1998, vol. 248, pp. 431–40

    Article  Google Scholar 

  20. P.K. Lai, and M. Skyllas-Kazacos: Electrochim. Acta, 1987, vol. 32, pp. 1443–49

    Article  CAS  Google Scholar 

  21. J. Robinson, and R.A. Osteryoung: J. Electrochem. Soc., 1980, vol. 127 (1), pp. 122–28

    Article  CAS  Google Scholar 

  22. V. Kamavaram, and R.G. Reddy: Light Metals 2005, TMS, Warrendale, PA, 2005, pp. 501–05

    Google Scholar 

  23. M. Zhang, V. Kamavaram, and R.G. Reddy: JOM, 2003, vol. 55 (11), pp. 54–57

    Article  CAS  Google Scholar 

  24. V. Kamavaram, and R.G. Reddy: in Metal Separation Technologies III, R.E. Aune, and M. Kekkonen, eds., Helsinki University of Technology, Espoo, Finland, 2004, pp. 143–51

    Google Scholar 

  25. V. Kamavaram, D. Mantha, and R.G. Reddy: Electrochim. Acta, 2005, vol. 50, pp. 3286–95

    Article  CAS  Google Scholar 

  26. Z.J. Karpinski, and R.A. Osteryoung: Inorg. Chem., 1984, vol. 23, pp. 1491–94

    Article  CAS  Google Scholar 

  27. D. Pradhan, and R.G. Reddy: in Innovation in Titanium Technology: Novel Materials and processes I, M.N. Gungor, M.A. Imam, and F.H. Froes, eds., TMS, Warrendale, PA, 2007, pp. 79–86

    Google Scholar 

  28. D. Pradhan and R.G. Reddy: Electrochim. Acta, 2008, in press

  29. A. Dent, K. Seddon, and T. Welton: J. Chem. Soc., Chem. Commun., 1990, vol. 4, pp. 315–16

    Article  Google Scholar 

  30. A. Abdur-Saha, A. Greenway, K.R. Sodden, and T. Walton: Org. Mass Spectrum, 1992, vol. 27, p. 648

    Article  Google Scholar 

  31. T. Takenaka, and M. Kawakami: Int. J. Mater. Product Technol., Special Issue, SPMI, 2001, pp. 500–06

  32. A. Brenner: Electrodeposition of Alloys—Principles and Practice, vol. I, Academic Press, New York, NY, 1963, pp. 75–85 and 139–46

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Science Foundation, ACIPCO, and The University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.G. Reddy.

Additional information

Manuscript submitted June 11, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, D., Reddy, R. & Lahiri, A. Low-Temperature Production of Ti-Al Alloys Using Ionic Liquid Electrolytes: Effect of Process Variables on Current Density, Current Efficiency, and Deposit Morphology. Metall Mater Trans B 40, 114–122 (2009). https://doi.org/10.1007/s11663-008-9214-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9214-y

Keywords

Navigation