Skip to main content

Advertisement

Log in

Structure and Properties of Self-Organized TiO2 Nanotubes from Stirred Baths

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Self-organized porous nanotubular TiO2 was anodically formed on titanium in 1M Na2SO4 electrolyte containing 0.5 wt pct NaF. The oxidation was carried out for 0.5, 1, 2, and 4 hours at 20 V with the baths stirred using (1) magnetic pellet and (2) ultrasonic vibration. During the initial stages of oxidation, a barrier type of oxide film is formed, which gives rise to the formation of pores beneath it. With increasing time of oxidation, the pores self-organize to tubular structure. Of the two types of agitation studied, ultrasonics help in earlier complete removal of the barrier layer. The nanotubes have single-pore diameter of 50 to 90 nm under the magnetic pellet conditions and 55 to 110 nm under the ultrasonic agitation condition. The porosity was of the order of 24 to 30 pct for both types. The charges that have flown onto the coatings are greater under the ultrasonated condition. The as-oxidized coatings were amorphous for both types. The coatings obtained by using magnetic pellet had lower tensile adhesion strengths than those obtained using ultrasonic agitation. Heat treatment for 2 hours at 500 °C maintained the tubular morphology and converted the amorphous coatings to anatase TiO2. These anatase containing coatings were analyzed for texture by X-ray pole figures, and it was found that (101) and (200) poles were randomly oriented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. G.E. Thompson: Thin Solid Films, 1997, vol. 297, pp. 192–201

    Article  CAS  Google Scholar 

  2. H. Tsuchiya, P. Schmuki: Electrochem. Comm., 2005, vol. 7, pp. 49–52

    Article  CAS  Google Scholar 

  3. H. Tsuchiya, P. Schmuki: Electrochem. Comm., 2004, vol. 6, pp. 1131–34

    Article  CAS  Google Scholar 

  4. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki: Electrochem. Comm., 2005, vol. 7, pp. 97–100

    Article  CAS  Google Scholar 

  5. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki: Electrochem. Comm., 2005, vol. 7, pp. 295–98

    Article  CAS  Google Scholar 

  6. V. Zwilling, M. Aucouturier, E.D. Ceretti: Electrochim. Acta, 1999, vol. 45, pp. 921–29

    Article  CAS  Google Scholar 

  7. H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki: Electrochem. Comm., 2005, vol. 7, pp. 576–80

    Article  CAS  Google Scholar 

  8. A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki: Electrochem. Comm., 2005, vol. 7, pp. 505–09

    Article  CAS  Google Scholar 

  9. L.V. Taveira, J.M. Macák, K. Sirotna, L.F.P. Dick, P. Schmuki: J. Electrochem. Soc., 2006, vol. 153, pp. B137–B143

    Article  CAS  Google Scholar 

  10. R. Beranek, H. Hildebrand, P. Schmuki: Electrochem. Solid-State Lett., 2003, vol. 6, pp. B12–B14

    Article  CAS  Google Scholar 

  11. J.M. Macak, K. Sirotna, P. Schmuki: Electrochim. Acta, 2005, vol. 50, pp. 3679–84

    Article  CAS  Google Scholar 

  12. L.V. Taveira, J.M. Macák, H. Tsuchiya, L.F.P. Dick, P. Schmuki: J. Electrochem. Soc., 2005, vol. 152, pp. B405–B410

    Article  CAS  Google Scholar 

  13. H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, P. Schmuki: Corr. Sci., 2005, vol. 47, pp. 3324–35

    Article  CAS  Google Scholar 

  14. E. Balaur, J.M. Macak, L. Taveira, P. Schmuki: Electrochem. Comm., 2005, vol. 7, pp. 1066–70

    Article  CAS  Google Scholar 

  15. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, S. Kleber, P. Schmuki: Chem. Phys. Lett., 2006, vol. 419, pp. 421–25

    Article  Google Scholar 

  16. H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki: Corr. Sci., 2007, vol. 49, pp. 203–10

    Article  CAS  Google Scholar 

  17. H. Tsuchiya, J.M. Macak, L. Müller, J. Kunze, F. Müller, P. Greil, S. Virtanen, P. Schmuki: J. Biomed. Mater. Res., 2006, vol. 77A, pp. 534–41

    Article  CAS  Google Scholar 

  18. G. Balasundaram, M. Sato, T.J. Webster: Biomaterials, 2006, vol. 27, pp. 2798–2805

    Article  CAS  Google Scholar 

  19. S. Pezzatini, R. Solito, L. Morbidelli, S. Lamponi, E. Boanini, A. Bigi, M. Ziche: J. Biomed. Mater. Res., 2006, vol. 76A, pp. 656–63

    Article  CAS  Google Scholar 

  20. R. Narayanan, S.K. Seshadri, T.Y. Kwon, K.H. Kim: Scripta Mater., 2007, vol. 56, pp. 229–32

    Article  CAS  Google Scholar 

  21. “Standard Test Method for Adhesion or Cohesive Strength of Flame-Sprayed Coatings,” ASTM C633-79, ASTM, Philadelphia, PA, 1980

  22. S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja: J. Catal., 2007, vol. 246, pp. 362–69

    Article  CAS  Google Scholar 

  23. S.K. Mohapatra, K.S. Raja, M. Misra, V.K. Mahajan, M. Ahmadian: Electrochim. Acta, 2007, vol. 53, pp. 590–97

    Article  CAS  Google Scholar 

  24. K.S. Raja, M. Misra, K. Paramguru: Electrochim. Acta, 2005, vol. 51, pp. 154–65

    Article  CAS  Google Scholar 

  25. S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja: Mater. Lett., 2008, vol. 62, pp. 1772–74

    Article  CAS  Google Scholar 

  26. M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura: J. Biomed. Mater. Res., 2003, vol. 64A, pp. 164–70

    Article  CAS  Google Scholar 

  27. Y.W. Gu, B.Y. Tay, C.S. Lim, M.S. Yong: Biomaterials, 2005, vol. 26, pp. 6916–23

    Article  CAS  Google Scholar 

  28. A. Kar, K.S. Raja, M. Misra: Surf. Coat. Technol., 2006, vol. 201, pp. 3723–31

    Article  CAS  Google Scholar 

  29. H. Kim, R.P. Camata, S. Lee, G.S. Rohrer, A.D. Rollet, Y.K. Vohra: Acta Mater., 2007, vol. 55, pp. 131–39

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Brain Korea 21 (BK21) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo-Han Kim.

Additional information

Manuscript submitted June 28, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, R., Ha, JY., Kwon, TY. et al. Structure and Properties of Self-Organized TiO2 Nanotubes from Stirred Baths. Metall Mater Trans B 39, 493–499 (2008). https://doi.org/10.1007/s11663-008-9153-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9153-7

Keywords

Navigation