Skip to main content
Log in

TiO2 nanotubes produced by the anodization process under different parameters

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the present study, nanoporous and nanotubular TiO2 structures were produced using the titanium anodization process and different parameters. The process was carried out using a solution of ammonium fluoride (0.04, 0.06 and 0.08 mol L−1), 10% (v/v) water and 90% (v/v) glycerin. The titanium plates were arranged at a 1 cm distance from each other at potentials of 15, 20 and 25 V and for different periods (15, 25 and 50 h). After anodization, the TiO2 nanostructures were calcinated at 450 °C for 30 min. The morphological and structural characterization obtained by scanning electronic microscopy and energy-dispersive X-ray spectroscopy shows the growth of different TiO2 nanostructures due to the variations in the experimental parameters. The X-ray diffraction measurements were used to calculate the grain size from the Scherrer equation. Cyclic voltammetry was used to observe the redox response and correlate the electro-chemical response with the experimental parameters for obtaining the TiO2 structures and their morphology. For the electrode produced during 50 h and at 25 V, an increase in the active surface area was observed, and the value of 0.68 cm2 for a geometric area of 0.24 cm2 was obtained, in addition to an increase in the electrochemical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.Y. Vakhrushev, T.B. Boitsova, TiO2 and TiO2/Ag nanofibers: template synthesis, structure, and photocatalytic properties. J. Porous Mater. 2021, 1–8 (2021)

    Google Scholar 

  2. C. Vanichvattanadecha, A. Jaroenworaluck, P. Henpraserttae, P. Wimuktiwan, P. Manpetch, W. Singhapong, Ordered mesoporous silica (SBA-16) supporting titania (TiO2) nanoparticles for photodegradation of paraquat (PQ) herbicide. J. Porous Mater. 28, 1137 (2021)

    Article  CAS  Google Scholar 

  3. L. Gui, J. Peng, P. Li, R. Peng, P. Yu, Y. Luo et al., Electrochemical degradation of dye on TiO2 nanotube array constructed anode. Chemosphere 235, 1189–1196 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. D.J. Ahirrao, H.M. Wilson, N. Jha, TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl. Surf. Sci. 491, 765–778 (2019)

    Article  CAS  Google Scholar 

  5. R. Deasa, S. Pearcea, K. Gossa, Q. Wanga, W. Chen, G.I.N. Waterhouse, Hierarchical Au/TiO2 nanoflower photocatalysts with outstanding performance for alcohol photoreforming under UV irradiation. Appl. Catal. A-Gen. 602, 117706 (2020)

    Article  Google Scholar 

  6. F. Guo, X. Su, G. Hou, Z. Liu, Z. Mei, Fabrication of superhydrophobic TiO2 surface with cactus-like structure by a facile hydrothermal approach. Colloids and Surf. A 395, 70–74 (2012)

    Article  CAS  Google Scholar 

  7. W. Wu, H. Rao, H. Feng, X. Guo, C. Su, D. Kuang, Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells. J. of Power Sources 260, 6–11 (2014)

    Article  CAS  Google Scholar 

  8. R.S. Dubey, S.R. Jadkar, A.B. Bhorde, Synthesis and characterization of various doped TiO2 nanocrystals for dye-sensitized solar cells. ACS Omega 6, 3470–3482 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Lin, M. Sun, B. Gao, W. Ding, Z. Zhang, S. Anandan, A. Umar, Hydrothermally regulating phase composition of TiO2 nanocrystals toward high photocatalytic activity. J. Alloys Compd. 850, 156653 (2021)

    Article  CAS  Google Scholar 

  10. T. Guo, N.A.K. Oztug, P. Han, S.O. Ivanovski, K. Gulati, Old is gold: electrolyte aging influences the topography, chemistry, and bioactivity of anodized TiO2 nanopores. ACS Appl. Mater. Interf. 13, 7897–7912 (2021)

    Article  CAS  Google Scholar 

  11. G. Strnad, Z. German-Sallo, L. Jakab-Farkas, C. Petrovan, D. Portan, Influence of electrical parameters on morphology of nanostructured TiO 2 layers developed by electrochemical anodization. MATEC Web of Conf. 112, 04021 (2017)

    Article  Google Scholar 

  12. J. Qin, Z. Cao, H. Li, Z. Su, Formation of anodic TiO2 nanotube arrays with ultra-small pore size. Surf. Coat. Technol. 405, 126661 (2021)

    Article  CAS  Google Scholar 

  13. S. Palmas, L. Mais, M. Mascia, A. Vacca, Trend in using TiO2 nanotubes as photoelectrodes in PEC processes for wastewater treatment. Curr Opin Electrochem 28, 100699 (2021)

    Article  CAS  Google Scholar 

  14. S. Shirazi-Fard, F. Mohammadpour, A.R. Zolghadr, A. Klein, Encapsulation and release of doxorubicin from TiO2 nanotubes: experiment, density functional theory calculations, and molecular dynamics simulation. J. Phys. Chem. B 125, 5549 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. R.A. Ocampo, F.E. Echeverría, Effect of the anodization parameters on TiO2 nanotubes characteristics produced in aqueous electrolytes with CMC. Appl. Surf. Sci. 469, 994–1006 (2019)

    Article  Google Scholar 

  16. A. Haring, A. Morris, M. Hu, Controlling morphological parameters of anodized titania nanotubes for optimized solar energy applications. Materials 5, 1890–1909 (2012)

    Article  CAS  PubMed Central  Google Scholar 

  17. A.M. Laera, L. Mirenghi, G. Cassano, L. Capodieci, M.C. Ferrara, S. Mazzarelli, M. Schioppa, D. Dimaio, A. Rizzo, M. Penza, L. Tapfer, Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing. Thin Solid Films 709, 138190 (2020)

    Article  CAS  Google Scholar 

  18. S.K. Ponnaiah, P. Prakash, B. Vellaichamy, Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2019.104629

    Article  PubMed  Google Scholar 

  19. M.O. Taipina, M.G. de Mello, L. Tamborlin, K.D. Pereira, A.D. Luchessi, A.R. Cremasco, A novel Ag doping Ti alloys route: formation and antibacterial effect of the TiO2 nanotubes. Mater. Chem. Phys. 261, 124192 (2021)

    Article  CAS  Google Scholar 

  20. K.H. Cheung, M.B. Pabbruwe, W.-F. Chen, P. Koshy, C.C. Sorrell, Thermodynamic and microstructural analyses of photocatalytic TiO2 from the anodization of biomedical-grade Ti6Al4V in phosphoric acid or sulfuric acid. Ceram. Int. 47, 1609–1624 (2021)

    Article  CAS  Google Scholar 

  21. H. Buff, Ueber das electrische verhalten des aluminiums. Justus Liebigs Ann Chem 102, 265–284 (1857)

    Article  Google Scholar 

  22. S. Wernick, The anodic oxidation of aluminium and its alloys. Trans IMF 9, 153–176 (1934)

    Article  Google Scholar 

  23. M. Assefpour-Dezfuly, C. Vlachos, E. Andrews, Oxide morphology and adhesive bonding on titanium surface. J. Mater. Sci. 19, 3626–3639 (1984)

    Article  CAS  Google Scholar 

  24. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochem. Acta 45, 921–929 (1999)

    Article  CAS  Google Scholar 

  25. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interf. Anal. 27, 629–637 (1999)

    Article  CAS  Google Scholar 

  26. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dicke, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Sci. Res. 16, 3331–3334 (2001)

    Article  CAS  Google Scholar 

  27. C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 109, 15754–15759 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Zhang, Q. Wang, H. Xu, W. Zhang, Q. Zhou, H. Zeng, J. Yang, J. Zhu, X. Zhu, TiO2 nanotube arrays with a volume expansion factor greater than 2.0: Evidence against the field-assisted ejection theory. Electrochem. commun. 114, 106717 (2020)

    Article  CAS  Google Scholar 

  29. S. Garcia-Vergara, P. Skeldon, G. Thompson, H. Habazaki, A flow model of porous anodic film growth on aluminium. Electrochem. Acta 52, 681–687 (2006)

    Article  CAS  Google Scholar 

  30. Ö.Ö. Çapraz, P. Shrotriya, P. Skeldon, G.E. Thompson, K.R. Hebert, Factors controlling stress generation during the initial growth of porous anodic aluminum oxide. Electrochem. Acta 159, 16–22 (2015)

    Article  Google Scholar 

  31. W. Huang et al., Split TiO2 nanotubes− evidence of oxygen evolution during Ti anodization. Electrochem. commun. 106, 106532 (2019)

    Article  CAS  Google Scholar 

  32. M. Yu, W. Huang, P. Li, H. Huang, K. Zhang, X. Zhu, Morphology evolution of TiO2 nanotubes with additional reducing agent: evidence of oxygen release. Electrochem. commun. 98, 28–32 (2019)

    Article  CAS  Google Scholar 

  33. L.-L. Li, Y.-J. Chen, H.-P. Wu, N.S. Wang, E.W.-G. Diau, Detachment and transfer of ordered TiO 2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energ. Environ. Sci. 4, 3420–3425 (2011)

    Article  CAS  Google Scholar 

  34. G.G. Bessegato, F.F. Hudari, M.V.B. Zanoni, Self-doped TiO2 nanotube electrodes: a powerful tool as a sensor platform for electroanalytical applications. Electrochem. Acta 235, 527–533 (2017)

    Article  CAS  Google Scholar 

  35. S.H. Kang, J.-Y. Kim, Y. Kim, H.S. Kim, Y.-E. Sung, Surf. modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. J. Phys. Chem. C 111, 9614–9623 (2007)

    Article  CAS  Google Scholar 

  36. J. Macak, F. Schmidt-Stein, P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. commun. 9, 1783–1787 (2007)

    Article  CAS  Google Scholar 

  37. F. Hilario, V. Roche, R.P. Nogueira, A.M.J. Junior, Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochem. Acta 245, 337–349 (2017)

    Article  CAS  Google Scholar 

  38. L. Xing, J. Jia, Y. Wang, B. Zhang, S. Dong, Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. International J. Hydrog. Energy 35, 12169–12173 (2010)

    Article  CAS  Google Scholar 

  39. L. Gan, Y. Wu, H. Song, C. Lu, S. Zhang, A. Li, Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols. Chemosp. 226, 329–339 (2019)

    Article  CAS  Google Scholar 

  40. K.M. Chahrour, P.C. Ooi, A.M. Eid, A.A. Nazeer, M. Madkoure, C.F. Deea, M.F.M.R. Weea, A.A. Hamzah, Synergistic effect of bi-phased and self-doped Ti+ 3 on anodic TiO2 nanotubes photoelectrode for photoelectrochemical sensing. J. Alloy. Compd. 900, 163496 (2022)

    Article  CAS  Google Scholar 

  41. H. Pan, M. Sun, X. Wang, M. Zhang, M. Murugananthan, Y. Zhang, A novel electric-assisted photocatalytic technique using self-doped TiO2 nanotube films. Appl. Catal. B 307, 121174 (2022)

    Article  CAS  Google Scholar 

  42. R. Narayanan, T.-Y. Kwon, K.-H. Kim, TiO2 nanotubes from stirred glycerol/NH4F electrolyte: roughness, wetting behavior and adhesion for implant applications. Mater. Chem. Phys. 117, 460–464 (2009)

    Article  CAS  Google Scholar 

  43. L. Qin, Q. Chen, R. Lan, R. Jiang, X. Quan, B. Xu, F. Zhang, Y. Jia, Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 31, 1059–1064 (2015)

    Article  CAS  Google Scholar 

  44. B. Munirathinam, H. Pydimukkala, N. Ramaswamy, L. Neelakantan, Influence of crystallite size and surf. morphology on electrochemical properties of annealed TiO2 nanotubes. Appl. Surf. Sci. 355, 1245–1253 (2015)

    Article  CAS  Google Scholar 

  45. S. Nishanthi, E. Subramanian, B. Sundarakannan, D.P. Padiyan, An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells 132, 204–209 (2015)

    Article  CAS  Google Scholar 

  46. P. Zhu, Y. Zhao, Cyclic voltammetry measurements of electroactive surf. area of porous nickel: peak current and peak charge methods and diffusion layer effect. Mater. Chem. Phys. 233, 60–67 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CAPES, CNPq and FAPEAM (project FAPEAM N. 0.62.01142/2019), UFAM for financial assistance provided for the present research work and the LPQI, DeGEO, LTMOE/CPAAF/INPA, OpTima, CMABio, Central Analítica labs at IFAM for assistance with equipment.

Author information

Authors and Affiliations

Authors

Contributions

VAM methodology, investigation, formal analysis, writing of original draft, visualization. FMP methodology, idea, investigation, review. NAB formal analysis, writing—review & editing, project administration.

Corresponding author

Correspondence to Victoria A. Maia.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, V.A., Paschoal, F.M. & Braga, N.A. TiO2 nanotubes produced by the anodization process under different parameters. J Porous Mater 29, 1981–1989 (2022). https://doi.org/10.1007/s10934-022-01307-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01307-0

Keywords

Navigation