Skip to main content
Log in

Modeling of the Equiaxed Dendrite Coarsening Based on the Interdendritic Liquid Permeability during Alloy Solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 02 December 2009

Abstract

In this investigation, a model has been developed for determination of liquid flow permeability through dendritic structures during equiaxed dendrite growth. Two separate computational models have been coupled for modeling the permeability and coarsening in mushy alloys. The dendrite growth has been simulated using a cellular automation finite difference analysis, while the fluid flow has been modeled employing computational fluid dynamic. A new approach has also been proposed in calculation of the coarsening phenomenon as well as modification of the micro fluid flow based on switching between permeability and pressure gradients at high solid fractions. The predictions show that in high solid fractions, an iterated algorithm on the permeability gradient at a given pressure is closer to the experimental results. Therefore, under these circumstances, the continuity equation would not be satisfied by prediction and correction of the pressure field. Instead, the continuity equation would be satisfied by iteration and correction of the local permeability at a constant pressure gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Darcy: Les Fontaines Publiques De Ville de Dijon, Victor Dalmont, Paris, 1856, p. 647

  2. M.V. Bruschke, S.G. Advani: J. Rheol., 1993, vol. 37, pp. 479–98

    Article  CAS  ADS  Google Scholar 

  3. B.R. Gebart: J. Compos. Mater., 1992, vol. 26, pp. 1100–33

    Article  CAS  Google Scholar 

  4. J.F. McCartney: Phys. Fluids, 1994, vol. 6, pp. 435–47

    Article  ADS  Google Scholar 

  5. L. Donald, C. Koch: J. Fluid Mech., 1997, vol. 349, pp. 31–66

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. D.A. Edwards, M. Shapiro: Phys. Fluid, 1990, vol. 2, pp. 45–55

    Article  MATH  CAS  ADS  Google Scholar 

  7. D. Bernard, O. Nielsen, L. Salvo et al.: Phys. Fluids, 1995, vol. 7, pp. 2563–75

    Article  Google Scholar 

  8. D. Nagelhout, M.S. Bhat: Mater. Sci. Eng., 1995, vol. 191, pp. 203–08

    Article  Google Scholar 

  9. A. Eidsath: Chem. Eng. Sci., 1983, vol. 38, pp. 1803–16

    Article  CAS  Google Scholar 

  10. S. Ganesan, C.L. Chan, D.R. Poirier: Mater. Sci. Eng. A, 1992, vol. 151, pp. 97–105

    Article  Google Scholar 

  11. J.F. McCarthy: Acta Metall. Mater., 1994, vol. 42, pp. 1573–81

    Article  CAS  ADS  Google Scholar 

  12. M.S. Bhat, D.R. Poirier, J.C. Heinrich: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1049–56

    Article  CAS  ADS  Google Scholar 

  13. B. Goyeau, T. Benihaddadene, D. Gobin, and M. Quintard: in Modeling of Casting, Welding and Advanced Solidification Processes, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, vol. VIII, pp. 353–60

  14. B. Bjerkholt: Master’s Thesis, University of Oslo, Oslo, 1999

  15. H.-J. Diepers, C. Beckermann, I. Steinbach: Acta Mater., 1999, vol. 47, pp. 3663–78

    Article  CAS  Google Scholar 

  16. S.G.R. Brown, J.A. Spittle, D.J. Jarvis, R. Walden-Bevan: Acta Mater., 2002, vol. 50, pp. 1559–69

    Article  CAS  Google Scholar 

  17. D.J. Jarvis, S.G.R. Brown, J.A. Spittle: Mater. Sci. Technol., 2000, vol. 16, pp. 1420–24

    Article  CAS  Google Scholar 

  18. S. Whitaker: Transport Porous Media, 1996, vol. 25, pp. 27–61

    Article  CAS  Google Scholar 

  19. H.J. Diepers, C. Beckermann, I. Steinbach: Acta Mater., 1999, vol. 47, pp. 3663–78

    Article  CAS  Google Scholar 

  20. Goyeau, T. Benihaddandene, D. Gobin, and M. Quintard: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 613–22

  21. R.G. Santos, M.L.N.M. Melo: Mater. Sci. Eng. A, 2005, vol. 391, pp.151–58

    Article  CAS  Google Scholar 

  22. T.S. Piwonka, M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, 1157–65.

    CAS  Google Scholar 

  23. D. Apelian, M.C. Flemings, R. Mehrabian: Metall. Trans. B, 1974, vol. 5B, pp. 2533–37

    ADS  Google Scholar 

  24. N. Streat, F. Weinberg: Metall. Trans. B, 1976, vol. 7B, pp. 417–23

    Article  CAS  ADS  Google Scholar 

  25. R. Nasser-Rafi, R. Desamukh, D.R. Poirier: Metall. Trans. A, 1985, vol. 16A, pp. 2263–71

    CAS  ADS  Google Scholar 

  26. K. Murakami, T. Shiraishi, T. Okamoto: Acta Metall., 1983, vol. 31, pp. 1417–24

    Article  CAS  Google Scholar 

  27. K. Murakami, T. Shiraishi, T. Okamoto: Acta Metall., 1984, vol. 32, pp. 1423–28

    Article  CAS  Google Scholar 

  28. K. Murakami, T. Shiraishi, T. Okamoto: Acta Metall., 1984, vol. 32, pp. 1741–44

    Article  CAS  Google Scholar 

  29. D.R. Poirier, S. Ganesan: Mater. Sci. Eng. A, 1992, vol. 157, pp. 113–23

    Article  Google Scholar 

  30. D.R. Poirier, P. Ocansey: Mater. Sci. Eng. A, 1993, vol. 171, pp. 231–40

    Article  Google Scholar 

  31. A.J. Duncan, Q. Han, S. Viswanathan: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 745–50

    Article  CAS  Google Scholar 

  32. O. Nielsen, L. Arnberg, A. Mo, H.S. Thevik: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2455–62

    Article  CAS  Google Scholar 

  33. O. Nielsen, L. Arnberg: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3149–53

    Article  CAS  Google Scholar 

  34. R.C. Atwood, S. Sridhar, W. Zhang, P.D. Lee: Acta Mater., 2000, vol. 48, pp. 405–17

    Article  CAS  Google Scholar 

  35. P.D. Lee, A. Chirazi, D. See: J. Light Met., 2001, vol. 1, pp. 15–30

    Article  Google Scholar 

  36. W. Kurz, B. Giovanola, R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30

    Article  CAS  Google Scholar 

  37. W. Kurz, C. Bezencon: Sci. Technol. Adv. Mater., 2001, vol. 12, pp. 185–91

    Article  Google Scholar 

  38. S.K. Kailasam, M.E. Glicksman: Acta Mater., 1986, vol. 34, pp. 823–36

    Article  Google Scholar 

  39. S.M.H. Mirbagheri: Commun. Numer. Meth. Eng., 2007, vol. 23, pp. 295–312

    Article  MATH  MathSciNet  Google Scholar 

  40. H.B. Dong and P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68, 661

  41. S.M.H. Mirbagheri, N. Varahram, P. Davami: Int. J. Num. Meth. Eng., 2003, vol. 58, pp. 723–48

    Article  MATH  Google Scholar 

  42. C.W. Hirt, B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201–25

    Article  MATH  ADS  Google Scholar 

  43. T. Campanella, C. Charbon, M. Rappaz: Scripta Mater., 2003, vol. 49, pp. 1029–34

    Article  CAS  Google Scholar 

  44. T. Jalanti: Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, 2000

  45. S. Ganesan, D.R. Poirier: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 173–81

    CAS  ADS  Google Scholar 

  46. J.C. Heinrich, D.R. Poirier: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 881–99

    Article  CAS  ADS  Google Scholar 

  47. S.M.H. Mirbagheri, J. Silk: Mater. Des., 2006, vol. 27, pp. 115–24

    CAS  Google Scholar 

  48. P. Zhao, J.C. Heinrich, and D.R. Poirier: Proc. AIAA 42nd Aerospace Science Meeting, AIAA2004, Reno, Nevada, 2004, p. 411

  49. D.R. Poirier, P. Ocansey: Mater. Sci. Eng. A, 1993, vol. 171, pp. 231–40.

    Article  Google Scholar 

  50. D.R. Poirier, P.J. Nandapurkar, S. Ganesan: Metall. Trans. B, 1991, vol. 22B, pp. 889–900.

    Article  CAS  ADS  Google Scholar 

  51. M.D. Peres, C.A. Siqueira, A. Garcia: J. Alloys Compd., 2004, vol. 381, pp. 168–81.

    Article  CAS  Google Scholar 

  52. M.L.M.N. Melo, E.M.S. Rizzo, R.G. Santos: Mater. Sci. Eng. A, 2004, vol. 374, pp. 351–61

    Article  CAS  Google Scholar 

  53. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth-Heineman, Oxford, United Kingdom, 1992, chapter 11, p. 421

  54. H.R. Thresh, A.F. Crawley: Metall. Trans., 1970, vol. 1, pp. 1531–35

    Article  CAS  Google Scholar 

  55. J.R. Sarazin, A. Hellawell: Metall. Trans. A, 1988, vol. 19A, pp. 1861–71

    CAS  ADS  Google Scholar 

  56. J. Guo, C. Beckermann: Num. Heat Transfer Part A, 2003, vol. 44, pp. 559–76

    Article  ADS  Google Scholar 

  57. S.D. Elliot: Ph.D. Thesis, University of Queensland, Queensland, Australia, 1999

Download references

Acknowledgments

The author expresses his warm thanks to Professor S. Serajzadeh and Mr. E. Khajeh for their valuable comments. He also acknowledges with gratitude the Department of Materials, Imperial College, London, for the research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.M.H. Mirbagheri.

Additional information

Manuscript submitted May 31, 2007.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11663-009-9325-0

Appendix A

Appendix A

Finite difference approximations

  1. (1)

    The finite difference approximations of momentum transport equation are follows:[41,57]

    $$ U^{{n + 1}}_{{i,j,k}} = U^{n}_{{i,j,k}} + \Delta t{\left[ {\frac{{P^{{n + 1}}_{{i,j,k}} - P^{{n + 1}}_{{i + 1,j,k}} }} {{\rho \Delta x}} + g_{x} - FUX - FUY - FUZ + VISX + PERX} \right]} $$
    (A1)
    $$ V^{{n + 1}}_{{i,j,k}} = V^{n}_{{i,j,k}} + \Delta t{\left[ {\frac{{P^{{n + 1}}_{{i,j,k}} - P^{{n + 1}}_{{i,j + 1,k}} }} {{\rho \Delta y}} + g_{Y} - FVX - FVY - FVZ + VISY + PERY} \right]} $$
    (A2)
    $$ W^{{n + 1}}_{{i,j,k}} = W^{n}_{{i,j,k}} + \Delta t{\left[ {\frac{{P^{{n + 1}}_{{i,j,k}} - P^{{n + 1}}_{{i,j,k + 1}} }} {{\rho \Delta z}} + g_{Z} - FWX - FWY - FWZ + VISZ + PERZ} \right]} $$
    (A3)

    where

    $$ FUX = \frac{{U^{n}_{{i,j,k}} }} {{2\Delta x}}{\left[ {DUL + DUR + \alpha {\text{Sign}}(U_{\alpha } )(DUL - DUR)} \right]} $$
    $$ DUL = U^{n}_{{i,j,k}} - U^{n}_{{i - 1,j,k}} \quad DUR = U^{n}_{{i + 1,j,k}} - U^{n}_{{i,j,k}} ;\quad U_{\alpha } = (DUR + DUL)/2 $$
    $$ VISX = \upsilon \;{\left( {\frac{{U^{n}_{{i + 1,j,k}} - 2U^{n}_{{i,j,k}} + U^{n}_{{i - 1,j,k}} }} {{\Delta x^{2} }} + \frac{{U^{n}_{{i,j + 1,k}} - 2U^{n}_{{i,j,k}} + U^{n}_{{i,j - 1,k}} }} {{\Delta y^{2} }} + \frac{{U^{n}_{{i,j,k + 1}} - 2U^{n}_{{i,j,k}} + U_{{i,j,k - 1}} }} {{\Delta z^{2} }}} \right)} $$
    $$ PERX = \upsilon {\left( {f_{L} } \right)}{\left[ {KX_{{i,j,k}} } \right]}^{{ - 1}} U^{n}_{{i,j,k}} $$

    where \( {\mathbf{V}} = U\,\hat{i} + V\,\hat{j} + W\,\hat{k} \), KX is the local permeability in the x direction, and the superscripts (n) and (n + l) indicate the old and the new time-steps, respectively. α = 0 or 1 is the control factor for upwind and centered differencing, respectively. A similar method is used for the calculation of the advective flux terms FUY, FUZ, FVX, FVY, FVZ, FWX, FWY, and FWZ, the viscous flux terms VISY and VISZ, and the permeability terms PERY and PERZ.

  2. (2)

    The finite difference approximation to the continuity equation is

    $$ D_{{i,j,k}} = \frac{{U^{{n + 1}}_{{i,j,k}} \;\, - U^{{n + 1}}_{{i - 1,j,k}} }} {{\Delta x}} + \frac{{V^{{n + 1}}_{{i,j,k}} \, - V^{{n + 1}}_{{i,j - 1,k}} }} {{\Delta y}} + \frac{{W^{{n + 1}}_{{i,j,k}} \, - W^{{n + 1}}_{{i,j,k - 1}} \,}} {{\Delta z}} = - M_{{i,j,k}} $$
    (A4)

    where

    $$ \left\{ \begin{aligned}{} M_{{i,j,k}} = \frac{{\rho _{L} - \rho _{S} }} {{\rho _{{mu}} }}{\left( {DFT + UFX + VFY + WFZ} \right)}\quad \quad if\quad & 0 < f_{{L_{{i,j,k}} }} \le 1 \\ M_{{i,j,k}} = 0.0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad & {\text{otherwise}} \\ \end{aligned} \right. $$
    $$ DFT = \frac{{f^{{n + 1}}_{{L_{{i,j,k}} }} - f^{n}_{{L_{{i,j,k}} }} }} {{\Delta t}};\quad UFX = 0.5{\left( {U_{{i,j,k}} + U_{{i - 1,j,k}} } \right)}\frac{{f^{n}_{{L_{{i + 1,j,k}} }} - f^{n}_{{L_{{i - 1,j,k}} }} }} {{2\Delta x}} $$
    $$ VFY = 0.5{\left( {V_{{i,j,k}} + V_{{i,j - 1,k}} } \right)}\frac{{f^{n}_{{L_{{i,j + 1,k}} }} - f^{n} _{{L_{{i,j - 1,k}} }} }} {{2\Delta y}};\quad WFZ = 0.5{\left( {W_{{i,j,k}} + W_{{i,j,k - 1}} } \right)}\,\frac{{f^{n}_{{L_{{i,j,k + 1}} }} - f^{n}_{{L_{{i,j,k - 1}} }} }} {{2\Delta z}} $$
  3. (3)

    The finite difference approximation of the heat-transfer equation is

    $$ T^{{n + 1}}_{{i,j,k}} = T^{n}_{{i,j,k}} - \Delta t{\left[ {{\left( {UTX + VTY + WTZ} \right)} + {\left( {DQX + DQY + DQZ} \right)}} \right]} $$
    (A5)
    $$ UTX = 0.5{\left\{ {(1 + \alpha )U_{{i - 1,j,k}} (DTXL) + (1 - \alpha )U_{{i,j,k}} (DTXR)} \right\}} $$
    $$ DTXL = \frac{{T_{{i,j,k}} - T_{{i - 1,j,k}} }} {{\Delta x}};\quad DTXR = \frac{{T_{{i + 1,j,k}} - T_{{i,j,k}} }} {{\Delta x}} $$
    $$ DQX = \frac{{QXR - QXL}} {{\rho \,C_{{\rm P}} \,\Delta x}};\quad QXR = - k_{R} \frac{{T^{n}_{{i + 1,j,k}} - T^{n}_{{i,j,k}} }} {{\Delta x}};\quad QXL = - k_{l} \frac{{T^{n}_{{i,j,k}} - T^{n}_{{i - 1,j,k}} }} {{\Delta x}} $$
    $$ QXR = - k_{R} \frac{{T^{n}_{{i + 1,j}} - T^{n}_{{i,j}} }} {{\Delta x}},\quad QXL = - k_{l} \frac{{T^{n}_{{i,j}} - T^{n}_{{i - 1,j}} }} {{\Delta x}} $$

The convection terms, VTY and WTZ, and the thermal diffusion fluxes, DQY and DQZ, are found in a similar way. In the mushy zone (freezing range), the liquid fraction and the specific heat are calculated from Eqs. [9] and [14].

In the CFD program, the first guesses for the new-time levels, namely, U n+1 , V n+1, and W n+1, are calculated by an explicit approximation with the old time-level (U n , V n, and W n) values. In the first step of the solution, therefore, the P n+1 values in Eqs. [A1] through [A3] are replaced by P n. Then, the guess velocities are put into continuity Eq. [A4]. In order to satisfy the continuity Eq. [A4], the velocities as well as pressures on the computational cells should be adjusted iteratively with Eq. [A6] for the low solid fraction and Eq. [A7] for the high solid fraction, separately. For 3-D cells of the low solid fraction, 0 ≤ f ≤ 0.79, in each iteration, values of the δP i,j,k and the velocities on the sides of the 3-D cell are found as follows:

$$ \delta {\rm P}_{{i,j,k}} = \omega {\cdot} D_{{i,j,k}} \;{\left\{ {\frac{{\delta {\kern 1pt} t}} {{\rho _{{mu}} }}{\left[ {\frac{1} {{\Delta x}}\,{\left( {\frac{1} {{\Delta x_{l} }} + \frac{1} {{\Delta x_{r} }}} \right)} + \frac{1} {{\Delta y}}{\left( {\frac{1} {{\Delta y_{t} }} + \frac{1} {{\Delta y_{b} }}} \right)} + \frac{1} {{\Delta y}}{\left( {\frac{1} {{\Delta z_{{{\text{front}}}} }} + \frac{1} {{\Delta z_{{{\text{back}}}} }}} \right)}} \right]}} \right\}}^{{ - 1}} $$
(A6)

where

$$ {\rm P}^{{m + 1}}_{{i,j,k}} = P^{m}_{{i,j,k}} + \delta {\rm P}^{m}_{{i,j,k}} $$
$$ U^{{m + 1}}_{{i,j,k}} = U^{m}_{{i,j,k}} + \frac{{\delta t}} {{\rho _{{mu}} \,\Delta x}}\delta {\rm P}^{m}_{{i,j,k}} ;\quad U^{{m + 1}}_{{i - 1,j,k}} = U^{m}_{{i - 1,j,k}} - \frac{{\delta t}} {{\rho _{{mu}} \,\Delta x}}\delta {\rm P}^{m}_{{i,j,k}} $$
$$ V^{{m + 1}}_{{i,j,k}} = V^{m}_{{i,j,k}} + \frac{{\delta t}} {{\rho _{{mu}} \,\Delta y}}\delta {\rm P}^{m}_{{i,j,k}} ;\quad V^{{m + 1}}_{{i,j - 1,k}} = V^{m}_{{i,j - 1,k}} - \frac{{\delta t}} {{\rho _{{mu}} \,\Delta y}}\delta {\rm P}^{m}_{{i,j - 1,k}} $$
$$ W^{{m + 1}}_{{i,j,k}} = W^{m}_{{i,j,k}} + \frac{{\delta t}} {{\rho _{{mu}} \,\Delta z}}\delta {\rm P}^{m}_{{i,j,k}} ;\quad W^{{m + 1}}_{{i,j,k - 1}} = W^{m}_{{i,j,k - 1}} - \frac{{\delta t}} {{\rho _{{mu}} \,\Delta z}}\delta {\rm P}^{m}_{{i,j,k - 1}} $$

For 3-D cells of the high solid fraction (0.79 < f ≤ 1.0), due to coarsening phenomenon for remaining liquid between solid grains, the velocity field must be corrected by the criteria of the permeability (\( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}_{{i,j,k}} \)) not by the criteria of the pressure (δP i,j,k ). During the iterative calculations, \( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}_{{i,j,k}} \) can be determined by differentiating Darcy’s equation, i.e., μ∇(V) = (K∇P) = ∇K · ∇P + K 2 P, under conditions that we can ignore the ∇KP term for very small interdendritic material volumes. Therefore, the velocities may be estimated based on Darcy’s law (\( {\partial {\mathbf{V}}} \mathord{\left/ {\vphantom {{\partial {\mathbf{V}}} {\partial t}}} \right. \kern-\nulldelimiterspace} {\partial t} = - \upsilon f{\mathbf{V}}\;{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}} \right]}^{{ - 1}} \)) and the \( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}_{{i,j,k}} \) as follows:

$$ \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}_{{i,j,k}} = \omega \mu {\cdot} {\kern 1pt} D_{{i,j,k}} {\left\{ {\;2P_{{i,j,k}} \,{\left[ {\frac{1} {{\Delta x}}\,{\left( {\frac{1} {{\Delta x_{{{\text{left}}}} }} + \frac{1} {{\Delta x_{{{\text{right}}}} }}} \right)} + \frac{1} {{\Delta y}}{\left( {\frac{1} {{\Delta y_{{{\text{top}}}} }} + \frac{1} {{\Delta y_{{{\text{bottom}}}} }}} \right)} + \frac{1} {{\Delta y}}{\left( {\frac{1} {{\Delta z_{{{\text{front}}}} }} + \frac{1} {{\Delta z_{{{\text{back}}}} }}} \right)}} \right]}} \right\}}^{{ - 1}} $$
(A7a)
$$ {\partial \ifmmode\expandafter\vec\else\expandafter\vec\fi{V}} \mathord{\left/ {\vphantom {{\partial \ifmmode\expandafter\vec\else\expandafter\vec\fi{V}} {\partial t}}} \right. \kern-\nulldelimiterspace} {\partial t} = - \upsilon f {\mathbf{V}}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}} \right]}^{{ - 1}} $$
(A7b)

where ω is over-relaxation, and

$$ K^{{m + 1}}_{{i,j,k}} = K^{m}_{{i,j,k}} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{i,j,k}} $$
$$ U^{{m + 1}}_{{i,j,k}} = U^{m}_{{i,j,k}} {\left( {1 + \frac{{\delta tf_{{L_{{i,j,k}} }} \mu }} {{\rho _{L} }}} \right)}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{l,j,k}} } \right]}^{{ - 1}} \quad U^{{m + 1}}_{{i - 1,j,k}} = U^{m}_{{i - 1,j,k}} {\left( {1 - \frac{{\delta tf_{{L_{{i - 1,j,k}} }} \mu }} {{\rho _{L} }}} \right)}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{l - 1,j,k}} } \right]}^{{ - 1}} $$
$$ V^{{m + 1}}_{{i,j,k}} = V^{m}_{{i,j,k}} {\left( {1 + \frac{{\delta tf_{{L_{{i,j,k}} }} \mu }} {{\rho _{L} }}} \right)}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{l,j,k}} } \right]}^{{ - 1}} \quad V^{{m + 1}}_{{i,j - 1,k}} = V^{m}_{{i,j - 1,k}} {\left( {1 - \frac{{\delta tf_{{L_{{i,j - 1,k}} }} \mu }} {{\rho _{L} }}} \right)}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{l,j - 1,k}} } \right]}^{{ - 1}} $$
$$ W^{{m + 1}}_{{i,j,k}} = W^{m}_{{i,j,k}} {\left( {1 + \frac{{\delta tf_{{L_{{i,j,k}} }} \mu }} {{\rho _{L} }}} \right)}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{l,j,k}} } \right]}^{{ - 1}} \quad W^{{m + 1}}_{{i,j,k - 1}} = W^{m}_{{i,j,k - 1}} {\left( {1 - \frac{{\delta tf_{{L_{{i,j,k - 1}} }} \mu }} {{\rho _{L} }}} \right)}{\left[ { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{K}^{m}_{{l,j,k - 1}} } \right]}^{{ - 1}} $$

The preceding velocities are then put into the continuity equation again, and the outlined procedures are repeated. This new procedure is capable of considering solid grain coarsening during final stages of solidification (i.e., high solid fraction). Convergence of iteration is achieved when D i,j,k  < 10−6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirbagheri, S. Modeling of the Equiaxed Dendrite Coarsening Based on the Interdendritic Liquid Permeability during Alloy Solidification. Metall Mater Trans B 39, 469–483 (2008). https://doi.org/10.1007/s11663-008-9149-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9149-3

Keywords

Navigation